Infinitely many nontrivial solutions for fractional boundary value problems with impulses and perturbation
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2283-2295.

Voir la notice de l'article provenant de la source International Scientific Research Publications

By the variational methods, the existence criteria of infinitely many nontrivial solutions for fractional differential equations with impulses and perturbation are established. An example is given to illustrate main results. Recent results in the literature are generalized and improved.
DOI : 10.22436/jnsa.010.05.01
Classification : 26A33, 34B37, 34K10
Keywords: Fractional differential equations with impulses and perturbation, infinitely many nontrivial solutions, variational methods.

Li, Peiluan 1 ; Ma, Jianwei 2 ; Wang, Hui 2 ; Li, Zheqing 3

1 Control science and engineering post-doctoral mobile stations, Henan University of Science and Technology, Luoyang, 471023, China;School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471023, China
2 College of Information Engineering, Henan University of Science and Technology, Luoyang, 471003, China
3 Network and Information Center, Henan University of Science and Technology, Luoyang, 471003, China
@article{JNSA_2017_10_5_a0,
     author = {Li, Peiluan and Ma, Jianwei and Wang, Hui and Li, Zheqing},
     title = {Infinitely many nontrivial solutions for fractional boundary value problems with impulses and perturbation},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {2283-2295},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {2017},
     doi = {10.22436/jnsa.010.05.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.01/}
}
TY  - JOUR
AU  - Li, Peiluan
AU  - Ma, Jianwei
AU  - Wang, Hui
AU  - Li, Zheqing
TI  - Infinitely many nontrivial solutions for fractional boundary value problems with impulses and perturbation
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 2283
EP  - 2295
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.01/
DO  - 10.22436/jnsa.010.05.01
LA  - en
ID  - JNSA_2017_10_5_a0
ER  - 
%0 Journal Article
%A Li, Peiluan
%A Ma, Jianwei
%A Wang, Hui
%A Li, Zheqing
%T Infinitely many nontrivial solutions for fractional boundary value problems with impulses and perturbation
%J Journal of nonlinear sciences and its applications
%D 2017
%P 2283-2295
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.01/
%R 10.22436/jnsa.010.05.01
%G en
%F JNSA_2017_10_5_a0
Li, Peiluan; Ma, Jianwei; Wang, Hui; Li, Zheqing. Infinitely many nontrivial solutions for fractional boundary value problems with impulses and perturbation. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2283-2295. doi : 10.22436/jnsa.010.05.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.01/

[1] Bai, C.-Z. Existence of three solutions for a nonlinear fractional boundary value problem via a critical points theorem, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-13 | Zbl

[2] Baleanu, D.; Khan, H.; Jafari, H.; Khan, R. A.; Alipour, M. On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions, Adv. Difference Equ., Volume 2015 (2015), pp. 1-14 | DOI

[3] Benchohra, M.; Henderson, J.; Ntouyas, S. Impulsive differential equations and inclusions, Contemporary Mathematics and Its Applications, Hindawi Publishing Corporation, New York, 2006 | DOI

[4] Bonanno, G. A critical point theorem via the Ekeland variational principle, Nonlinear Anal., Volume 75 (2012), pp. 2992-3007 | Zbl | DOI

[5] Bonanno, G.; Marano, S. A. On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal., Volume 89 (2010), pp. 1-10 | DOI | Zbl

[6] Bonanno, G.; Rodríguez-López, R.; Tersian, S. Existence of solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal., Volume 17 (2014), pp. 717-744 | DOI

[7] Chen, J.; Tang, X. H. Existence and multiplicity of solutions for some fractional boundary value problem via critical point theory, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-21 | Zbl

[8] Corvellec, J.-N.; Motreanu, V. V.; Saccon, C. Doubly resonant semilinear elliptic problems via nonsmooth critical point theory, J. Differential Equations, Volume 248 (2010), pp. 2064-2091 | DOI | Zbl

[9] D'Aguì, G.; Bella, B. Di; Tersian, S. Multiplicity results for superlinear boundary value problems with impulsive effects, Math. Methods Appl. Sci., Volume 39 (2016), pp. 1060-1068 | DOI | Zbl

[10] Debbouche, A.; Baleanu, D. Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems, Comput. Math. Appl., Volume 62 (2011), pp. 1442-1450 | DOI | Zbl

[11] Erwin, V. J.; Roop, J. P. Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Equations, Volume 22 (2006), pp. 558-576 | Zbl | DOI

[12] Firoozjaee, M. A.; Yousefi, S. A.; Jafari, H.; Baleanu, D. On a numerical approach to solve multi-order fractional differential equations with initial/boundary conditions, J. Comput. Nonlinear Dynam., Volume 10 (2015), pp. 1-6 | DOI

[13] Ge, B. Multiple solutions for a class of fractional boundary value problems, Abstr Appl. Anal., Volume 2012 (2012), pp. 1-16

[14] Hu, Z.-G.; Liu, W.-B.; Liu, J.-Y. Ground state solutions for a class of fractional differential equations with Dirichlet boundary value condition, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-7

[15] Jiao, F.; Zhou, Y. Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl., Volume 62 (2011), pp. 1181-1199 | DOI | Zbl

[16] Jiao, F.; Zhou, Y. Existence results for fractional boundary value problem via critical point theory, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 22 (2012), pp. 1-17 | DOI

[17] Khalil, H.; Khan, R. A.; Baleanu, D.; Saker, S. H. Approximate solution of linear and nonlinear fractional differential equations under m-point local and nonlocal boundary conditions, Adv. Difference Equ., Volume 1 (2016), pp. 1-28 | DOI

[18] Kilbas, A. A.; Srivastava, M. H.; Trujillo, J. J. Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006

[19] Lakshmikantham, V.; Baınov, D. D.; Simeonov, P. S. Theory of impulsive differential equations, Series in Modern Applied Mathematics, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989

[20] Lakshmikantham, V.; Leela, S.; Vasundhara, D. J. Theory of fractional dynamic systems, Cambridge Scientific Publishers, Cambridge, UK, 2009

[21] Li, Y.-N.; Sun, H.-R.; Zhang, Q.-G. Existence of solutions to fractional boundary-value problems with a parameter, Electron. J. Differential Equations, Volume 2013 (2013), pp. 1-12

[22] Mawhin, J.; Willem, M. Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, Springer- Verlag, New York, 1989

[23] Nyamoradi, N.; Rodríguez-López, R. On boundary value problems for impulsive fractional differential equation, Appl. Math. Comput., Volume 271 (2015), pp. 874-892 | DOI

[24] Rabinowitz, P. H. Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986 | DOI

[25] Rodríguez-López, R.; Tersian, S. Multiple solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal., Volume 17 (2014), pp. 1016-1038 | DOI

[26] Samoilenko, A. M.; Perestyuk, N. A. Impulsive differential equations, With a preface by Yu. A. Mitropolskiıand a supplement by S. I. Trofimchuk, Translated from the Russian by Y. Chapovsky, World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, World Scientific Publishing Co., Inc., River Edge, NJ, 1995

[27] Sun, H.-R.; Zhang, Q.-G. Existence of solutions for a fractional boundary value problem via the Mountain Pass method and an iterative technique, Comput. Math. Appl., Volume 64 (2012), pp. 3436-3443 | DOI | Zbl

[28] Tian, Y.; Ge, W.-G. Multiple solutions of impulsive Sturm-Liouville boundary value problem via lower and upper solutions and variational methods, J. Math. Anal. Appl., Volume 387 (2012), pp. 475-489 | DOI | Zbl

[29] Torres, C. Mountain pass solution for a fractional boundary value problem, J. Fract. Calc. Appl., Volume 5 (2014), pp. 1-10

[30] Yang, X.-J. Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems, ArXiv, Volume 2016 (2016), pp. 1-13

[31] Yang, X.-J.; Baleanu, D.; Khan, Y.; Mohyud-Din, S. T. Local fractional variational iteration method for diffusion and wave equations on Cantor sets, Romanian J. Phys., Volume 59 (2014), pp. 36-48

[32] Yang, X.-J.; ; Gao, F.; Machado, J. A. Tenreiro; Baleanu, D. A new fractional derivative involving the normalized sinc function without singular kernel, ArXiv, Volume 2017 (2017), pp. 1-11

[33] Yang, X.-J.; Srivastava, H. M.; Machado, J. A. Tenreiro A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow, Therm. Sci., Volume 20 (2016), pp. 753-756

[34] Yang, X.-J.; Machado, J. A. Tenreiro A new fractional operator of variable order: application in the description of anomalous diffusion, ArXiv, Volume 2016 (2016), pp. 1-13 | DOI

[35] Yang, X.-J.; Machado, J. A. Tenreiro; Baleanu, D.; Cattani, C. On exact traveling-wave solutions for local fractional Korteweg-de Vries equation, Chaos, Volume 26 (2016), pp. 1-5 | DOI | Zbl

[36] Zhao, Y.-L.; Chen, H.-B.; Qin, B. Multiple solutions for a coupled system of nonlinear fractional differential equations via variational methods, Appl. Math. Comput., Volume 257 (2015), pp. 417-427 | Zbl | DOI

[37] Zhao, Y.-L.; Zhao, Y.-L. Nontrivial solutions for a class of perturbed fractional differential systems with impulsive effects, Bound. Value Probl., Volume 2016 (2016), pp. 1-16 | Zbl | DOI

[38] Zhou, Y. Basic theory of fractional differential equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014 | DOI

[39] Zou, W.-M. Variant fountain theorems and their applications, Manuscripta Math., Volume 104 (2001), pp. 343-358 | DOI | Zbl

Cité par Sources :