Voir la notice de l'article provenant de la source International Scientific Research Publications
Cho, Yeol Je 1 ; Kim, Young-Ho 2
@article{JNSA_2017_10_4_a7, author = {Cho, Yeol Je and Kim, Young-Ho}, title = {Carath\'eodory's approximate solution to stochastic differential delay equation}, journal = {Journal of nonlinear sciences and its applications}, pages = {1365-1376}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2017}, doi = {10.22436/jnsa.010.04.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.08/} }
TY - JOUR AU - Cho, Yeol Je AU - Kim, Young-Ho TI - Carathéodory's approximate solution to stochastic differential delay equation JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 1365 EP - 1376 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.08/ DO - 10.22436/jnsa.010.04.08 LA - en ID - JNSA_2017_10_4_a7 ER -
%0 Journal Article %A Cho, Yeol Je %A Kim, Young-Ho %T Carathéodory's approximate solution to stochastic differential delay equation %J Journal of nonlinear sciences and its applications %D 2017 %P 1365-1376 %V 10 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.08/ %R 10.22436/jnsa.010.04.08 %G en %F JNSA_2017_10_4_a7
Cho, Yeol Je; Kim, Young-Ho. Carathéodory's approximate solution to stochastic differential delay equation. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 4, p. 1365-1376. doi : 10.22436/jnsa.010.04.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.08/
[1] A note on the existence and uniqueness of the solutions to SFDES, J. Inequal. Appl., Volume 2012 (2012 ), pp. 1-11 | DOI | Zbl
[2] Moment decay rates of stochastic differential equations with time-varying delay, Filomat, Volume 24 (2010), pp. 115-132 | Zbl | DOI
[3] A note on the solutions of neutral SFDEs with infinite delay, J. Inequal. Appl., Volume 2013 (2013 ), pp. 1-11 | Zbl | DOI
[4] The difference between the approximate and the accurate solution to stochastic differential delay equation, Proc. Jangjeon Math. Soc., Volume 18 (2015), pp. 165-175 | Zbl
[5] Stochastic differential equations and applications, Second edition, Horwood Publishing Limited, Chichester, 2008
[6] On the approximations of solutions to stochastic differential delay equations with Poisson random measure via Taylor series, Filomat, Volume 27 (2013), pp. 201-214 | Zbl | DOI
[7] Remarks on the existence and uniqueness of the solutions to stochastic functional differential equations with infinite delay, J. Comput. Appl. Math., Volume 220 (2008), pp. 364-372 | DOI | Zbl
[8] Existence, uniqueness and stability of the solutions to neutral stochastic functional differential equations with infinite delay, Appl. Math. Comput., Volume 210 (2009), pp. 72-79 | DOI
[9] Dynamics of Gilpin-Ayala competition model with random perturbation, Filomat, Volume 24 (2010), pp. 101-113 | Zbl | DOI
[10] uniqueness and stability of the solution to neutral stochastic functional differential equations with infinite delay under non-Lipschitz conditions, Adv. Difference Equ., Volume 2013 (2013), pp. 1-12 | DOI
[11] The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay, J. Math. Anal. Appl., Volume 331 (2007), pp. 516-531 | DOI
Cité par Sources :