Topological structures and the coincidence point of two mappings in cone b-metric spaces
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 4, p. 1334-1344.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Let (X, d,K) be a cone b-metric space over a ordered Banach space ($E,\preceq$) with respect to cone P. In this paper, we study two problems: (1) We introduce a b-metric $\rho_c$ and we prove that the b-metric space induced by b-metric $\rho_c$ has the same topological structures with the cone b-metric space. (2) We prove the existence of the coincidence point of two mappings $T , f : X \rightarrow X$ satisfying a new quasi-contraction of the type $d(Tx, Ty) \preceq \Lambda\{d(fx, fy), d(fx, Ty), d(fx, Tx), d(fy, Ty), d(fy, Tx)\}$, where $\Lambda : E \rightarrow E$ is a linear positive operator and the spectral radius of $K\Lambda$ is less than 1. Our results are new and extend the recent results of [N. Hussain, M. H. Shah, Comput. Math. Appl., 62 (2011), 1677–1684], [M. Cvetković, V. Rakočević, Appl. Math. Comput., 237 (2014), 712–722], [Z. Kadelburg, S. Radenović, J. Nonlinear Sci. Appl., 3 (2010), 193–202].
DOI : 10.22436/jnsa.010.04.05
Classification : 47H10, 54H25
Keywords: Topological structures, cone b-metric spaces, quasi-contraction, points of coincidence, common fixed points.

Zhang, Congjun 1 ; Li, Sai 1 ; Liu, Baoqing 1

1 School of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, China
@article{JNSA_2017_10_4_a4,
     author = {Zhang, Congjun and Li, Sai and Liu, Baoqing},
     title = {Topological structures and the coincidence point of two mappings in cone b-metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1334-1344},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2017},
     doi = {10.22436/jnsa.010.04.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.05/}
}
TY  - JOUR
AU  - Zhang, Congjun
AU  - Li, Sai
AU  - Liu, Baoqing
TI  - Topological structures and the coincidence point of two mappings in cone b-metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 1334
EP  - 1344
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.05/
DO  - 10.22436/jnsa.010.04.05
LA  - en
ID  - JNSA_2017_10_4_a4
ER  - 
%0 Journal Article
%A Zhang, Congjun
%A Li, Sai
%A Liu, Baoqing
%T Topological structures and the coincidence point of two mappings in cone b-metric spaces
%J Journal of nonlinear sciences and its applications
%D 2017
%P 1334-1344
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.05/
%R 10.22436/jnsa.010.04.05
%G en
%F JNSA_2017_10_4_a4
Zhang, Congjun; Li, Sai; Liu, Baoqing. Topological structures and the coincidence point of two mappings in cone b-metric spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 4, p. 1334-1344. doi : 10.22436/jnsa.010.04.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.05/

[1] Abbas, M.; Jungck, G. Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., Volume 341 (2008), pp. 416-420 | DOI | Zbl

[2] Aliprantis, C. D.; Tourky, R. Cones and duality, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2007

[3] Çakallı, H.; Sönmez, A.; Genç, Ç . On an equivalence of topological vector space valued cone metric spaces and metric spaces, Appl. Math. Lett., Volume 25 (2012), pp. 429-433 | DOI | Zbl

[4] Cvetković, M.; Rakočević, V. Quasi-contraction of Perov type, Appl. Math. Comput., Volume 237 (2014), pp. 712-722 | DOI

[5] Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, Volume 46 (1998), pp. 263-276

[6] Huang, L.-G.; Zhang, X. Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., Volume 332 (2007), pp. 1468-1476 | DOI

[7] Hussain, N.; Shah, M. H. KKM mappings in cone b-metric spaces, Comput. Math. Appl., Volume 62 (2011), pp. 1677-1684 | Zbl | DOI

[8] Jachymski, J.; Klima, J. Cantor’s intersection theorem for K-metric spaces with a solid cone and a contraction principle, J. Fixed Point Theory Appl., Volume 18 (2016), pp. 445-463 | Zbl | DOI

[9] Jungck, G. Commuting mappings and fixed points, Amer. Math. Monthly, Volume 83 (1976), pp. 261-263

[10] Kadelburg, Z.; Radenović, S. Some common fixed point results in non-normal cone metric spaces, J. Nonlinear Sci. Appl., Volume 3 (2010), pp. 193-202

[11] Khamsi, M. A.; Hussain, N. KKM mappings in metric type spaces, Nonlinear Anal., Volume 73 (2010), pp. 3123-3129 | DOI | Zbl

[12] Song, G.-X.; Sun, X.-Y.; Zhao, Y.; Wang, G.-T. New common fixed point theorems for maps on cone metric spaces, Appl. Math. Lett., Volume 23 (2010), pp. 1033-1037 | DOI

Cité par Sources :