Voir la notice de l'article provenant de la source International Scientific Research Publications
Araci, Serkan 1 ; Acikgoz, Mehmet 2 ; Diagana, Toka 3 ; Srivastava, H. M. 4
@article{JNSA_2017_10_4_a2, author = {Araci, Serkan and Acikgoz, Mehmet and Diagana, Toka and Srivastava, H. M.}, title = {A novel approach for obtaining new identities for the lambda extension of {q-Euler} polynomials arising from the q-umbral calculus}, journal = {Journal of nonlinear sciences and its applications}, pages = {1316-1325}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2017}, doi = {10.22436/jnsa.010.04.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.03/} }
TY - JOUR AU - Araci, Serkan AU - Acikgoz, Mehmet AU - Diagana, Toka AU - Srivastava, H. M. TI - A novel approach for obtaining new identities for the lambda extension of q-Euler polynomials arising from the q-umbral calculus JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 1316 EP - 1325 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.03/ DO - 10.22436/jnsa.010.04.03 LA - en ID - JNSA_2017_10_4_a2 ER -
%0 Journal Article %A Araci, Serkan %A Acikgoz, Mehmet %A Diagana, Toka %A Srivastava, H. M. %T A novel approach for obtaining new identities for the lambda extension of q-Euler polynomials arising from the q-umbral calculus %J Journal of nonlinear sciences and its applications %D 2017 %P 1316-1325 %V 10 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.03/ %R 10.22436/jnsa.010.04.03 %G en %F JNSA_2017_10_4_a2
Araci, Serkan; Acikgoz, Mehmet; Diagana, Toka; Srivastava, H. M. A novel approach for obtaining new identities for the lambda extension of q-Euler polynomials arising from the q-umbral calculus. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 4, p. 1316-1325. doi : 10.22436/jnsa.010.04.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.03/
[1] Novel identities involving Genocchi numbers and polynomials arising from applications of umbral calculus, Appl. Math. Comput., Volume 233 (2014), pp. 599-607 | DOI | Zbl
[2] Extended p-adic q-invariant integrals on \(\mathbb{Z}_p\) associated with applications of umbral calculus, Adv. Difference Equ., Volume 2013 (2013 ), pp. 1-14 | Zbl | DOI
[3] On the extended Kim’s p-adic q-deformed fermionic integrals in the p-adic integer ring, J. Number Theory, Volume 133 (2013), pp. 3348-3361 | Zbl | DOI
[4] A new family of q-analogue of Genocchi numbers and polynomials of higher order, Kyungpook Math. J., Volume 54 (2014), pp. 131-141 | DOI | Zbl
[5] An elementary and real approach to values of the Riemann zeta function, Phys. Atom. Nucl., Volume 73 (2010), pp. 251-254
[6] Some q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order n, and the multiple Hurwitz zeta function, Appl. Math. Comput., Volume 199 (2008), pp. 723-737 | DOI | Zbl
[7] Carlitz’s q-Bernoulli and q-Euler numbers and polynomials and a class of generalized q-Hurwitz zeta functions, Appl. Math. Comput., Volume 215 (2009), pp. 1185-1208 | Zbl | DOI
[8] A unified presentation of three families of generalized Apostol type polynomials based upon the theory of the umbral calculus and the umbral algebra, J. Number Theory, Volume 133 (2013), pp. 3245-3263 | Zbl | DOI
[9] A q-umbral calculus, J. Math. Anal. Appl., Volume 84 (1981), pp. 178-207 | DOI
[10] Inverse operators, q-fractional integrals, and q-Bernoulli polynomials, J. Approx. Theory, Volume 114 (2002), pp. 269-307 | DOI | Zbl
[11] q-generalized Euler numbers and polynomials, Russ. J. Math. Phys., Volume 13 (2006), pp. 293-298 | DOI
[12] q-Bernoulli polynomials and q-umbral calculus, Sci. China Math., Volume 57 (2014), pp. 1867-1874 | Zbl | DOI
[13] Some identities of q-Euler polynomials arising from q-umbral calculus, J. Inequal. Appl., Volume 2014 (2014 ), pp. 1-12 | DOI | Zbl
[14] Umbral calculus associated with Bernoulli polynomials, J. Number Theory, Volume 147 (2015), pp. 871-882 | DOI
[15] A note on q-Frobenius-Euler numbers and polynomials, Adv. Studies Theor. Phys., Volume 7 (2013), pp. 881-889
[16] Apostol-Euler polynomials arising from umbral calculus, Adv. Difference Equ., Volume 2013 (2013 ), pp. 1-7
[17] Reflection symmetries of q-Bernoulli polynomials, J. Nonlinear Math. Phys., Volume 12 (2005), pp. 412-422 | DOI
[18] The multiplication formulas for the Apostol-Bernoulli and Apostol-Euler polynomials of higher order, Integral Transforms Spec. Funct., Volume 20 (2008), pp. 377-391 | DOI | Zbl
[19] On a class of q-Bernoulli and q-Euler polynomials, Adv. Difference Equ., Volume 2013 (2013), pp. 1-11
[20] On a class of generalized q-Bernoulli and q-Euler polynomials, Adv. Difference Equ., Volume 2013 (2013 ), pp. 1-10 | DOI | Zbl
[21] Addition theorems for the Appell polynomials and the associated classes of polynomial expansions, Aequationes Math., Volume 85 (2013), pp. 483-495 | DOI | Zbl
[22] On the modified q-Euler numbers of higher order with weight, Adv. Stud. Contemp. Math. (Kyungshang), Volume 22 (2012), pp. 93-98 | Zbl
[23] The theory of the umbral calculus, I, J. Math. Anal. Appl., Volume 87 (1982), pp. 58-115 | DOI | Zbl
[24] The theory of the umbral calculus, III, J. Math. Anal. Appl., Volume 95 (1983), pp. 528-563 | Zbl | DOI
[25] The umbral calculus, Pure and Applied Mathematics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984
[26] More on the umbral calculus, with emphasis on the q-umbral calculus, J. Math. Anal. Appl., Volume 107 (1985), pp. 222-254 | Zbl | DOI
[27] Theorems on Apostol-Euler polynomials of higher order arising from Euler basis, Adv. Stud. Contemp. Math. (Kyungshang), Volume 23 (2013), pp. 337-345 | Zbl
[28] Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inf. Sci., Volume 5 (2011), pp. 390-444
[29] Zeta and q-Zeta functions and associated series and integrals, Elsevier, Inc., Amsterdam, 2012 | Zbl | DOI
Cité par Sources :