A novel approach for obtaining new identities for the lambda extension of q-Euler polynomials arising from the q-umbral calculus
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 4, p. 1316-1325.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this article, a new q-generalization of the Apostol-Euler polynomials is introduced using the usual q-exponential function. We make use of such a generalization to derive several properties arising from the q-umbral calculus.
DOI : 10.22436/jnsa.010.04.03
Classification : 11B68, 11S80, 11B65, 33D15
Keywords: \(q\)-Apostol-Euler polynomials, \(q\)-numbers, \(q\)-exponential function, \(q\)-umbral calculus, (\(\lambda،q\))-Euler numbers, (\(\lambda،q\))-Euler polynomials, properties and identities.

Araci, Serkan 1 ; Acikgoz, Mehmet 2 ; Diagana, Toka 3 ; Srivastava, H. M. 4

1 Department of Economics, Faculty of Economics, Administrative and Social Science, Hasan Kalyoncu University, TR-27410 Gaziantep, Turkey
2 Department of Mathematics, Faculty of Science and Arts, University of Gaziantep, TR-27310 Gaziantep, Turkey
3 Department of Mathematics, Howard University, 2441 6th Street, NW Washington 20059, D.C., U.S.A
4 Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada;China Medical University, Taichung 40402, Taiwan, Republic of China
@article{JNSA_2017_10_4_a2,
     author = {Araci, Serkan and Acikgoz, Mehmet and Diagana, Toka and Srivastava, H. M.},
     title = {A novel approach for obtaining new identities for the lambda extension of {q-Euler} polynomials arising from the q-umbral calculus},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1316-1325},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2017},
     doi = {10.22436/jnsa.010.04.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.03/}
}
TY  - JOUR
AU  - Araci, Serkan
AU  - Acikgoz, Mehmet
AU  - Diagana, Toka
AU  - Srivastava, H. M.
TI  - A novel approach for obtaining new identities for the lambda extension of q-Euler polynomials arising from the q-umbral calculus
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 1316
EP  - 1325
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.03/
DO  - 10.22436/jnsa.010.04.03
LA  - en
ID  - JNSA_2017_10_4_a2
ER  - 
%0 Journal Article
%A Araci, Serkan
%A Acikgoz, Mehmet
%A Diagana, Toka
%A Srivastava, H. M.
%T A novel approach for obtaining new identities for the lambda extension of q-Euler polynomials arising from the q-umbral calculus
%J Journal of nonlinear sciences and its applications
%D 2017
%P 1316-1325
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.03/
%R 10.22436/jnsa.010.04.03
%G en
%F JNSA_2017_10_4_a2
Araci, Serkan; Acikgoz, Mehmet; Diagana, Toka; Srivastava, H. M. A novel approach for obtaining new identities for the lambda extension of q-Euler polynomials arising from the q-umbral calculus. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 4, p. 1316-1325. doi : 10.22436/jnsa.010.04.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.03/

[1] Araci, S. Novel identities involving Genocchi numbers and polynomials arising from applications of umbral calculus, Appl. Math. Comput., Volume 233 (2014), pp. 599-607 | DOI | Zbl

[2] Araci, S.; Acikgoz, M.; Kilicman, A. Extended p-adic q-invariant integrals on \(\mathbb{Z}_p\) associated with applications of umbral calculus, Adv. Difference Equ., Volume 2013 (2013 ), pp. 1-14 | Zbl | DOI

[3] Araci, S.; Acikgoz, M.; Sen, E. On the extended Kim’s p-adic q-deformed fermionic integrals in the p-adic integer ring, J. Number Theory, Volume 133 (2013), pp. 3348-3361 | Zbl | DOI

[4] Araci, S.; Acikgoz, M.; Seo, J. J. A new family of q-analogue of Genocchi numbers and polynomials of higher order, Kyungpook Math. J., Volume 54 (2014), pp. 131-141 | DOI | Zbl

[5] Bagdasaryan, A. G. An elementary and real approach to values of the Riemann zeta function, Phys. Atom. Nucl., Volume 73 (2010), pp. 251-254

[6] Choi, J.-S.; Anderson, P. J.; Srivastava, H. M. Some q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order n, and the multiple Hurwitz zeta function, Appl. Math. Comput., Volume 199 (2008), pp. 723-737 | DOI | Zbl

[7] Choi, J.-S.; Anderson, P. J.; Srivastava, H. M. Carlitz’s q-Bernoulli and q-Euler numbers and polynomials and a class of generalized q-Hurwitz zeta functions, Appl. Math. Comput., Volume 215 (2009), pp. 1185-1208 | Zbl | DOI

[8] Dere, R.; Simsek, Y.; Srivastava, H. M. A unified presentation of three families of generalized Apostol type polynomials based upon the theory of the umbral calculus and the umbral algebra, J. Number Theory, Volume 133 (2013), pp. 3245-3263 | Zbl | DOI

[9] Ihrig, E. C.; Ismail, M. E. H. A q-umbral calculus, J. Math. Anal. Appl., Volume 84 (1981), pp. 178-207 | DOI

[10] Ismail, M. E. H.; Rahman, M. Inverse operators, q-fractional integrals, and q-Bernoulli polynomials, J. Approx. Theory, Volume 114 (2002), pp. 269-307 | DOI | Zbl

[11] Kim, T. q-generalized Euler numbers and polynomials, Russ. J. Math. Phys., Volume 13 (2006), pp. 293-298 | DOI

[12] Kim, D. S.; Kim, T. q-Bernoulli polynomials and q-umbral calculus, Sci. China Math., Volume 57 (2014), pp. 1867-1874 | Zbl | DOI

[13] Kim, D. S.; Kim, T. Some identities of q-Euler polynomials arising from q-umbral calculus, J. Inequal. Appl., Volume 2014 (2014 ), pp. 1-12 | DOI | Zbl

[14] Kim, D. S.; Kim, T. Umbral calculus associated with Bernoulli polynomials, J. Number Theory, Volume 147 (2015), pp. 871-882 | DOI

[15] Kim, D. S.; Kim, T.; Lee, S.-H.; Seo, J.-J. A note on q-Frobenius-Euler numbers and polynomials, Adv. Studies Theor. Phys., Volume 7 (2013), pp. 881-889

[16] Kim, T.; Mansour, T.; Rim, S.-H.; Lee, S.-H. Apostol-Euler polynomials arising from umbral calculus, Adv. Difference Equ., Volume 2013 (2013 ), pp. 1-7

[17] Kupershmidt, B. A. Reflection symmetries of q-Bernoulli polynomials, J. Nonlinear Math. Phys., Volume 12 (2005), pp. 412-422 | DOI

[18] Luo, Q.-M. The multiplication formulas for the Apostol-Bernoulli and Apostol-Euler polynomials of higher order, Integral Transforms Spec. Funct., Volume 20 (2008), pp. 377-391 | DOI | Zbl

[19] Mahmudov, N. I. On a class of q-Bernoulli and q-Euler polynomials, Adv. Difference Equ., Volume 2013 (2013), pp. 1-11

[20] Mahmudov, N. I.; Keleshteri, M. E. On a class of generalized q-Bernoulli and q-Euler polynomials, Adv. Difference Equ., Volume 2013 (2013 ), pp. 1-10 | DOI | Zbl

[21] Pintér, Á .; Srivastava, H. M. Addition theorems for the Appell polynomials and the associated classes of polynomial expansions, Aequationes Math., Volume 85 (2013), pp. 483-495 | DOI | Zbl

[22] Rim, S.-H.; Jeong, J.-H. On the modified q-Euler numbers of higher order with weight, Adv. Stud. Contemp. Math. (Kyungshang), Volume 22 (2012), pp. 93-98 | Zbl

[23] Roman, S. The theory of the umbral calculus, I, J. Math. Anal. Appl., Volume 87 (1982), pp. 58-115 | DOI | Zbl

[24] Roman, S. The theory of the umbral calculus, III, J. Math. Anal. Appl., Volume 95 (1983), pp. 528-563 | Zbl | DOI

[25] Roman, S. The umbral calculus, Pure and Applied Mathematics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984

[26] Roman, S. More on the umbral calculus, with emphasis on the q-umbral calculus, J. Math. Anal. Appl., Volume 107 (1985), pp. 222-254 | Zbl | DOI

[27] Sen, E. Theorems on Apostol-Euler polynomials of higher order arising from Euler basis, Adv. Stud. Contemp. Math. (Kyungshang), Volume 23 (2013), pp. 337-345 | Zbl

[28] Srivastava, H. M.; / Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inf. Sci., Volume 5 (2011), pp. 390-444

[29] Srivastava, H. M.; Choi, J.-S. Zeta and q-Zeta functions and associated series and integrals, Elsevier, Inc., Amsterdam, 2012 | Zbl | DOI

Cité par Sources :