Voir la notice de l'article provenant de la source International Scientific Research Publications
You, Shujun 1 ; Ning, Xiaoqi 1
@article{JNSA_2017_10_4_a0, author = {You, Shujun and Ning, Xiaoqi}, title = {Well-posedness for a class of generalized {Zakharov} system}, journal = {Journal of nonlinear sciences and its applications}, pages = {1289-1302}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2017}, doi = {10.22436/jnsa.010.04.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.01/} }
TY - JOUR AU - You, Shujun AU - Ning, Xiaoqi TI - Well-posedness for a class of generalized Zakharov system JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 1289 EP - 1302 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.01/ DO - 10.22436/jnsa.010.04.01 LA - en ID - JNSA_2017_10_4_a0 ER -
%0 Journal Article %A You, Shujun %A Ning, Xiaoqi %T Well-posedness for a class of generalized Zakharov system %J Journal of nonlinear sciences and its applications %D 2017 %P 1289-1302 %V 10 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.01/ %R 10.22436/jnsa.010.04.01 %G en %F JNSA_2017_10_4_a0
You, Shujun; Ning, Xiaoqi. Well-posedness for a class of generalized Zakharov system. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 4, p. 1289-1302. doi : 10.22436/jnsa.010.04.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.01/
[1] Generalized solitary and periodic wave solutions to a (2 + 1)-dimensional Zakharov-Kuznetsov equation, Appl. Math. Comput., Volume 217 (2010), pp. 1421-1429 | DOI | Zbl
[2] The first integral method for constructing exact and explicit solutions to nonlinear evolution equations, Math. Methods Appl. Sci., Volume 35 (2012), pp. 716-722 | Zbl | DOI
[3] On the 2D Zakharov system with \(L^2\)-Schrödinger data, Nonlinearity, Volume 22 (2009), pp. 1063-1089 | DOI | Zbl
[4] A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, Volume 5 (1980), pp. 773-789 | DOI | Zbl
[5] Virial type blow-up solutions for the Zakharov system with magnetic field in a cold plasma, J. Funct. Anal., Volume 261 (2011), pp. 2508-2528 | Zbl | DOI
[6] On the Cauchy problem for the Zakharov system, J. Funct. Anal., Volume 151 (1997), pp. 384-436 | DOI
[7] Concentration properties of blow-up solutions and instability results for Zakharov equation in dimension two, II, Comm. Math. Phys., Volume 160 (1994), pp. 349-389 | Zbl | DOI
[8] Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension, Math. Comp., Volume 58 (1992), pp. 83-102 | DOI | Zbl
[9] On the existence and uniqueness of smooth solution for a generalized Zakharov equation, J. Math. Anal. Appl., Volume 365 (2010), pp. 238-253 | DOI | Zbl
[10] Quelques méthodes de résolution des problémes aux limites non linéaires, (French) Dunod; Gauthier-Villars, Paris, 1969
[11] Blow-up results of virial type for Zakharov equations, Comm. Math. Phys., Volume 175 (1996), pp. 433-455 | DOI | Zbl
[12] Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions, Math. Ann., Volume 313 (1999), pp. 127-140 | DOI | Zbl
[13] The nonlinear Schrödinger limit and the initial layer of the Zakharov equations, Differential Integral Equations, Volume 5 (1992), pp. 721-745 | Zbl
[14] Well-posedness for the Zakharov system with the periodic boundary condition, Differential Integral Equations, Volume 12 (1999), pp. 789-810 | Zbl
[15] The posedness of the periodic initial value problem for generalized Zakharov equations, Nonlinear Anal., Volume 71 (2009), pp. 3571-3584 | Zbl | DOI
[16] Equations of Langmuir turbulence and Zakharov equations: smoothness and approximation, Appl. Math. Mech. (English Ed.), Volume 33 (2012), pp. 1079-1092 | Zbl | DOI
[17] Collapse of Langmuir waves, Sov. Phys. JETP, Volume 35 (1972), pp. 908-914
Cité par Sources :