Voir la notice de l'article provenant de la source International Scientific Research Publications
Algahtani, Obaid 1
@article{JNSA_2017_10_3_a11, author = {Algahtani, Obaid}, title = {Estimates of initial coefficients for certain subclasses of bi-univalent functions involving quasi-subordination}, journal = {Journal of nonlinear sciences and its applications}, pages = {1004-1011}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2017}, doi = {10.22436/jnsa.010.03.12}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.12/} }
TY - JOUR AU - Algahtani, Obaid TI - Estimates of initial coefficients for certain subclasses of bi-univalent functions involving quasi-subordination JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 1004 EP - 1011 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.12/ DO - 10.22436/jnsa.010.03.12 LA - en ID - JNSA_2017_10_3_a11 ER -
%0 Journal Article %A Algahtani, Obaid %T Estimates of initial coefficients for certain subclasses of bi-univalent functions involving quasi-subordination %J Journal of nonlinear sciences and its applications %D 2017 %P 1004-1011 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.12/ %R 10.22436/jnsa.010.03.12 %G en %F JNSA_2017_10_3_a11
Algahtani, Obaid. Estimates of initial coefficients for certain subclasses of bi-univalent functions involving quasi-subordination. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 3, p. 1004-1011. doi : 10.22436/jnsa.010.03.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.12/
[1] Coefficient estimates for a class of star-like functions, Canad. J. Math., Volume 22 (1970), pp. 476-485 | DOI
[2] On some classes of bi-univalent functions, Studia Univ. Babe-Bolyai Math., Volume 31 (1986), pp. 70-77
[3] Coefficient bounds for new subclasses of bi-univalent functions, Filomat, Volume 27 (2013), pp. 1165-1171
[4] Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., Volume 2 (2013), pp. 49-60
[5] Univalent functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, New York, 1983
[6] Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc., Volume 20 (2012), pp. 179-182 | Zbl | DOI
[7] Fekete-Szegő problems for quasi-subordination classes, Abstr. Appl. Anal., Volume 2012 (2012 ), pp. 1-14
[8] On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 63-68 | DOI
[9] Conformal Mapping, Reprinting of the 1952 edition, Dover, New York, NY, USA, 1975
[10] The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in z < 1, Arch. Rational Mech. Anal., Volume 32 (1969), pp. 100-112 | DOI | Zbl
[11] Some inequalities on quasi-subordinate functions, Bull. Austral. Math. Soc. , Volume 43 (1991), pp. 317-329 | DOI | Zbl
[12] Quasi-subordination and coefficient conjectures, Bull. Amer. Math. Soc., Volume 76 (1970), pp. 1-9 | Zbl | DOI
[13] Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., Volume 23 (2010), pp. 1188-1192 | DOI
[14] A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., Volume 218 (2012), pp. 11461-11465 | Zbl | DOI
Cité par Sources :