New results for fractional differential equations with impulses via variational methods
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 3, p. 990-1003.

Voir la notice de l'article provenant de la source International Scientific Research Publications

By using variational methods and some critical points theorems, we establish some new results for the existence of infinitely many of solutions for fractional order differential equations with impulses. In addition, one example is given to illustrate our results.
DOI : 10.22436/jnsa.010.03.11
Classification : 26A33, 34B37, 34K10
Keywords: Fractional differential equations, impulses, infinitely many solutions, critical points theorem.

Li, Peiluan 1 ; Wang, Hui 2 ; Li, Zheqing 3

1 School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471023, China
2 College of Information Engineering, Henan University of Science and Technology, Luoyang, 471003, China
3 Network and Information Center, Henan University of Science and Technology, Luoyang, 471003, China
@article{JNSA_2017_10_3_a10,
     author = {Li, Peiluan and Wang, Hui and Li, Zheqing},
     title = {New results for fractional differential equations with impulses via variational methods},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {990-1003},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2017},
     doi = {10.22436/jnsa.010.03.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.11/}
}
TY  - JOUR
AU  - Li, Peiluan
AU  - Wang, Hui
AU  - Li, Zheqing
TI  - New results for fractional differential equations with impulses via variational methods
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 990
EP  - 1003
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.11/
DO  - 10.22436/jnsa.010.03.11
LA  - en
ID  - JNSA_2017_10_3_a10
ER  - 
%0 Journal Article
%A Li, Peiluan
%A Wang, Hui
%A Li, Zheqing
%T New results for fractional differential equations with impulses via variational methods
%J Journal of nonlinear sciences and its applications
%D 2017
%P 990-1003
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.11/
%R 10.22436/jnsa.010.03.11
%G en
%F JNSA_2017_10_3_a10
Li, Peiluan; Wang, Hui; Li, Zheqing. New results for fractional differential equations with impulses via variational methods. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 3, p. 990-1003. doi : 10.22436/jnsa.010.03.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.11/

[1] Bai, C.-Z. Existence of three solutions for a nonlinear fractional boundary value problem via a critical points theorem , Abstr. Appl. Anal., Volume 2012 (2012 ), pp. 1-13 | Zbl

[2] Bonanno, G.; S. A. Marano On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal., Volume 89 (2010), pp. 1-10 | DOI | Zbl

[3] Bonanno, G.; Rodríguez-López, R.; Tersian, S. Existence of solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal., Volume 17 (2014), pp. 717-744 | DOI

[4] Chen, J.; Tang, X.-H. Existence and multiplicity of solutions for some fractional boundary value problem via critical point theory, Abstr. Appl. Anal., Volume 2012 (2012 ), pp. 1-21 | Zbl

[5] Corvellec, J.-N.; Motreanu, V. V.; Saccon, C. Doubly resonant semilinear elliptic problems via nonsmooth critical point theory, J. Differential Equations, Volume 248 (2010), pp. 2064-2091 | DOI | Zbl

[6] A. M. A. El-Sayed Nonlinear functional-differential equations of arbitrary orders , Nonlinear Anal., Volume 33 (1998), pp. 181-186 | DOI

[7] Erwin, V. J.; Roop, J. P. Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Equations, Volume 22 (2006), pp. 558-576 | Zbl | DOI

[8] Ge, B. Multiple solutions for a class of fractional boundary value problems, Abstr. Appl. Anal., Volume 2012 (2012 ), pp. 1-16

[9] Hu, Z.-G.; Liu, W.-B.; J.-Y. Liu Ground state solutions for a class of fractional differential equations with Dirichlet boundary value condition, Abstr. Appl. Anal., Volume 2014 (2014 ), pp. 1-7

[10] Jiao, F.; Zhou, Y. Existence of solutions for a class of fractional boundary value problems via critical point theory , Comput. Math. Appl., Volume 62 (2011), pp. 1181-1199 | DOI | Zbl

[11] Jiao, F.; Zhou, Y. Existence results for fractional boundary value problem via critical point theory, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 22 (2012), pp. 1-17 | DOI

[12] Kilbas, A. A.; Srivastava, M. H.; Trujillo, J. J. Theory and applications of fractional differential equations, North-Holland Mathematics Studies , Elsevier Science B.V., Amsterdam, 2006

[13] Kilbas, A. A.; Trujillo, J. J. Differential equations of fractional order: methods, results and problems, I , Appl. Anal., Volume 78 (2001), pp. 153-192 | Zbl | DOI

[14] Lakshmikantham, V.; Leela, S.; J. V. Devi Theory of fractional dynamic systems, Camb. Sci. Publ., Cambridge, 2009

[15] Li, Y.-N.; Sun, H.-R.; Zhang, Q.-G. Existence of solutions to fractional boundary-value problems with a parameter, Electron. J. Differential Equations, Volume 2013 (2013 ), pp. 1-12

[16] Mawhin, J.; Willem, M. Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, Springer- Verlag, New York, 1989

[17] G. M. Mophou Existence and uniqueness of mild solutions to impulsive fractional differential equations , Nonlinear Anal., Volume 72 (2010), pp. 1604-1615 | DOI

[18] Nyamoradi, N.; R. Rodríguez-López On boundary value problems for impulsive fractional differential equations, Appl. Math. Comput., Volume 271 (2015), pp. 874-892 | DOI

[19] P. H. Rabinowitz Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986 | DOI

[20] Rodríguez-López, R.; S. Tersian Critical Point Theory and Hamiltonian Systems, Fract. Calc. Appl. Anal., Volume 17 (2014), pp. 1016-1038

[21] Samoĭlenko, A. M.; Perestyuk, N. A. Impulsive differential equations, With a preface by Yu. A. Mitropolski˘ıand a supplement by S. I. Trofimchuk, Translated from the Russian by Y. Chapovsky, World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, World Scientific Publishing Co., Inc., River Edge, NJ, 1995

[22] Sun, H.-R.; Zhang, Q.-G. Existence of solutions for a fractional boundary value problem via the Mountain Pass method and an iterative technique, Comput. Math. Appl., Volume 64 (2012), pp. 3436-3443 | DOI | Zbl

[23] Torres, C. Mountain pass solution for a fractional boundary value problem, J. Fract. Calc. Appl., Volume 5 (2014), pp. 1-10

[24] Zhao, Y.-L.; Chen, H.-B.; Qin, B. Multiple solutions for a coupled system of nonlinear fractional differential equations via variational methods, Appl. Math. Comput., Volume 257 (2015), pp. 417-427 | Zbl | DOI

Cité par Sources :