Voir la notice de l'article provenant de la source International Scientific Research Publications
Li, Peiluan 1 ; Wang, Hui 2 ; Li, Zheqing 3
@article{JNSA_2017_10_3_a10, author = {Li, Peiluan and Wang, Hui and Li, Zheqing}, title = {New results for fractional differential equations with impulses via variational methods}, journal = {Journal of nonlinear sciences and its applications}, pages = {990-1003}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2017}, doi = {10.22436/jnsa.010.03.11}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.11/} }
TY - JOUR AU - Li, Peiluan AU - Wang, Hui AU - Li, Zheqing TI - New results for fractional differential equations with impulses via variational methods JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 990 EP - 1003 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.11/ DO - 10.22436/jnsa.010.03.11 LA - en ID - JNSA_2017_10_3_a10 ER -
%0 Journal Article %A Li, Peiluan %A Wang, Hui %A Li, Zheqing %T New results for fractional differential equations with impulses via variational methods %J Journal of nonlinear sciences and its applications %D 2017 %P 990-1003 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.11/ %R 10.22436/jnsa.010.03.11 %G en %F JNSA_2017_10_3_a10
Li, Peiluan; Wang, Hui; Li, Zheqing. New results for fractional differential equations with impulses via variational methods. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 3, p. 990-1003. doi : 10.22436/jnsa.010.03.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.11/
[1] Existence of three solutions for a nonlinear fractional boundary value problem via a critical points theorem , Abstr. Appl. Anal., Volume 2012 (2012 ), pp. 1-13 | Zbl
[2] On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal., Volume 89 (2010), pp. 1-10 | DOI | Zbl
[3] Existence of solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal., Volume 17 (2014), pp. 717-744 | DOI
[4] Existence and multiplicity of solutions for some fractional boundary value problem via critical point theory, Abstr. Appl. Anal., Volume 2012 (2012 ), pp. 1-21 | Zbl
[5] Doubly resonant semilinear elliptic problems via nonsmooth critical point theory, J. Differential Equations, Volume 248 (2010), pp. 2064-2091 | DOI | Zbl
[6] Nonlinear functional-differential equations of arbitrary orders , Nonlinear Anal., Volume 33 (1998), pp. 181-186 | DOI
[7] Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Equations, Volume 22 (2006), pp. 558-576 | Zbl | DOI
[8] Multiple solutions for a class of fractional boundary value problems, Abstr. Appl. Anal., Volume 2012 (2012 ), pp. 1-16
[9] Ground state solutions for a class of fractional differential equations with Dirichlet boundary value condition, Abstr. Appl. Anal., Volume 2014 (2014 ), pp. 1-7
[10] Existence of solutions for a class of fractional boundary value problems via critical point theory , Comput. Math. Appl., Volume 62 (2011), pp. 1181-1199 | DOI | Zbl
[11] Existence results for fractional boundary value problem via critical point theory, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 22 (2012), pp. 1-17 | DOI
[12] Theory and applications of fractional differential equations, North-Holland Mathematics Studies , Elsevier Science B.V., Amsterdam, 2006
[13] Differential equations of fractional order: methods, results and problems, I , Appl. Anal., Volume 78 (2001), pp. 153-192 | Zbl | DOI
[14] Theory of fractional dynamic systems, Camb. Sci. Publ., Cambridge, 2009
[15] Existence of solutions to fractional boundary-value problems with a parameter, Electron. J. Differential Equations, Volume 2013 (2013 ), pp. 1-12
[16] Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, Springer- Verlag, New York, 1989
[17] Existence and uniqueness of mild solutions to impulsive fractional differential equations , Nonlinear Anal., Volume 72 (2010), pp. 1604-1615 | DOI
[18] On boundary value problems for impulsive fractional differential equations, Appl. Math. Comput., Volume 271 (2015), pp. 874-892 | DOI
[19] Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986 | DOI
[20] Critical Point Theory and Hamiltonian Systems, Fract. Calc. Appl. Anal., Volume 17 (2014), pp. 1016-1038
[21] Impulsive differential equations, With a preface by Yu. A. Mitropolski˘ıand a supplement by S. I. Trofimchuk, Translated from the Russian by Y. Chapovsky, World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, World Scientific Publishing Co., Inc., River Edge, NJ, 1995
[22] Existence of solutions for a fractional boundary value problem via the Mountain Pass method and an iterative technique, Comput. Math. Appl., Volume 64 (2012), pp. 3436-3443 | DOI | Zbl
[23] Mountain pass solution for a fractional boundary value problem, J. Fract. Calc. Appl., Volume 5 (2014), pp. 1-10
[24] Multiple solutions for a coupled system of nonlinear fractional differential equations via variational methods, Appl. Math. Comput., Volume 257 (2015), pp. 417-427 | Zbl | DOI
Cité par Sources :