Some results on a finite family of Bregman quasi-strict pseudo-contractions
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 3, p. 975-989.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The aim of this article is to establish a common fixed point theorem for a finite family of Bregman quasi-strict pseudocontractions in a reflexive Banach space. Applications to equilibrium problems, variational inequality problems, and zero point problems are provided.
DOI : 10.22436/jnsa.010.03.10
Classification : 65K10, 90C30, 47N10
Keywords: Bregman mapping, generalized projection, variational inequality, reflexivity, hybrid method.

Wang, Zi-Ming 1 ; Wei, Airong 2

1 Department of Foundation, Shandong Yingcai University, Jinan, China
2 School of Control Science and Engineering, Shandong University, Jinan, China
@article{JNSA_2017_10_3_a9,
     author = {Wang, Zi-Ming and Wei, Airong},
     title = {Some results on a finite family of {Bregman} quasi-strict pseudo-contractions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {975-989},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2017},
     doi = {10.22436/jnsa.010.03.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.10/}
}
TY  - JOUR
AU  - Wang, Zi-Ming
AU  - Wei, Airong
TI  - Some results on a finite family of Bregman quasi-strict pseudo-contractions
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 975
EP  - 989
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.10/
DO  - 10.22436/jnsa.010.03.10
LA  - en
ID  - JNSA_2017_10_3_a9
ER  - 
%0 Journal Article
%A Wang, Zi-Ming
%A Wei, Airong
%T Some results on a finite family of Bregman quasi-strict pseudo-contractions
%J Journal of nonlinear sciences and its applications
%D 2017
%P 975-989
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.10/
%R 10.22436/jnsa.010.03.10
%G en
%F JNSA_2017_10_3_a9
Wang, Zi-Ming; Wei, Airong. Some results on a finite family of Bregman quasi-strict pseudo-contractions. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 3, p. 975-989. doi : 10.22436/jnsa.010.03.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.10/

[1] Alber, Y. I. Metric and generalized projection operators in Banach spaces: properties and applications, Theory and applications of nonlinear operators of accretive and monotone type, Lecture Notes in Pure and Appl. Math., Dekker, New York, Volume 178 (1996), pp. 15-50 | Zbl

[2] Bauschke, H. H.; Borwein, J. M.; Combettes, P. L. Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces, Commun. Contemp. Math., Volume 3 (2001), pp. 615-647 | Zbl | DOI

[3] Dehaish, B. A. Bin; Latif, A.; Bakodah, H. O.; Qin, X.-L. A regularization projection algorithm for various problems with nonlinear mappings in Hilbert spaces, J. Inequal. Appl., Volume 2015 (2015), pp. 1-14 | DOI | Zbl

[4] Dehaish, B. A. Bin; Qin, X.-L.; Latif, A.; Bakodah, H. O. Weak and strong convergence of algorithms for the sum of two accretive operators with applications, J. Nonlinear Convex Anal., Volume 16 (2015), pp. 1321-1336 | Zbl

[5] Butnariu, D.; Iusem, A. N. Totally convex functions for fixed points computation and infinite dimensional optimization, Applied Optimization, Kluwer Academic Publishers, Dordrecht, 2000 | DOI

[6] Butnariu, D.; Resmerita, E. Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal., Volume 2006 (2006 ), pp. 1-39 | Zbl

[7] Cai, G.; C. S. Hu Strong convergence theorems of modified Ishikawa iterative process with errors for an infinite family of strict pseudo-contractions, Nonlinear Anal., Volume 71 (2009), pp. 6044-6053 | DOI | Zbl

[8] Censor, Y.; Lent, A. An iterative row-action method for interval convex programming, J. Optim. Theory Appl., Volume 34 (1981), pp. 321-353 | Zbl | DOI

[9] Cho, S. Y.; Li, W.-L.; Kang, S. M. Convergence analysis of an iterative algorithm for monotone operators, J. Inequal. Appl., Volume 2013 (2013 ), pp. 1-14 | DOI

[10] Cho, S. Y.; Qin, X.-L. On the strong convergence of an iterative process for asymptotically strict pseudocontractions and equilibrium problems, Appl. Math. Comput., Volume 235 (2014), pp. 430-438 | Zbl | DOI

[11] Hao, Y. Some results on a modified Mann iterative scheme in a reflexive Banach space, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-14 | Zbl | DOI

[12] Hao, Y.; Cho, S. Y. Fixed point iterations of a pair of hemirelatively nonexpansive mappings, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-14 | DOI | Zbl

[13] Haugazeau, Y. Sur les inéquations variationnelles et la minimisation de fonctionnelles convexes, Ph.D. Thesis, Université de Paris, Paris, 1968

[14] Kim, J. K. Strong convergence theorems by hybrid projection methods for equilibrium problems and fixed point problems of the asymptotically quasi-\(\phi\)-nonexpansive mappings, Fixed Point Theory Appl., Volume 2011 (2011 ), pp. 1-15 | DOI | Zbl

[15] Kim, J. K.; Cho, S. Y.; Qin, X.-L. Some results on generalized equilibrium problems involving strictly pseudocontractive mappings, Acta Math. Sci. Ser. B Engl. Ed., Volume 31 (2011), pp. 2041-2057 | Zbl | DOI

[16] Reich, S.; Sabach, S. A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal., Volume 10 (2009), pp. 471-485 | Zbl

[17] Reich, S.; Sabach, S. Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim., Volume 31 (2010), pp. 22-44 | Zbl | DOI

[18] Reich, S.; Sabach, S. Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces, Nonlinear Anal., Volume 73 (2010), pp. 122-135 | Zbl | DOI

[19] R. T. Rockafellar Characterization of the subdifferentials of convex functions, Pacific J. Math., Volume 17 (1966), pp. 497-510

[20] Ugwunnadi, G. C.; Ali, B.; Idris, I.; Minjibir, M. S. Strong convergence theorem for quasi-Bregman strictly pseudocontractive mappings and equilibrium problems in Banach spaces, Fixed Point Theory Appl., Volume 2014 (2014 ), pp. 1-16 | DOI | Zbl

[21] Wang, Z.-M. Strong convergence theorems for Bregman quasi-strict pseudo-contractions in reflexive Banach spaces with applications, Fixed Point Theory Appl., Volume 2015 (2015 ), pp. 1-17 | Zbl | DOI

[22] Wang, Z.-M.; Zhang, X.-M. Shrinking projection methods for systems of mixed variational inequalities of Browder type, systems of mixed equilibrium problems and fixed point problems, J. Nonlinear Funct. Anal., Volume 2014 (2014 ), pp. 1-25

[23] Zhang, H. Iterative processes for fixed points of nonexpansive mappings, Commun. Optim. Theory, Volume 2013 (2013 ), pp. 1-7

Cité par Sources :