Voir la notice de l'article provenant de la source International Scientific Research Publications
Wang, Zi-Ming 1 ; Wei, Airong 2
@article{JNSA_2017_10_3_a9, author = {Wang, Zi-Ming and Wei, Airong}, title = {Some results on a finite family of {Bregman} quasi-strict pseudo-contractions}, journal = {Journal of nonlinear sciences and its applications}, pages = {975-989}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2017}, doi = {10.22436/jnsa.010.03.10}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.10/} }
TY - JOUR AU - Wang, Zi-Ming AU - Wei, Airong TI - Some results on a finite family of Bregman quasi-strict pseudo-contractions JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 975 EP - 989 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.10/ DO - 10.22436/jnsa.010.03.10 LA - en ID - JNSA_2017_10_3_a9 ER -
%0 Journal Article %A Wang, Zi-Ming %A Wei, Airong %T Some results on a finite family of Bregman quasi-strict pseudo-contractions %J Journal of nonlinear sciences and its applications %D 2017 %P 975-989 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.10/ %R 10.22436/jnsa.010.03.10 %G en %F JNSA_2017_10_3_a9
Wang, Zi-Ming; Wei, Airong. Some results on a finite family of Bregman quasi-strict pseudo-contractions. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 3, p. 975-989. doi : 10.22436/jnsa.010.03.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.10/
[1] Metric and generalized projection operators in Banach spaces: properties and applications, Theory and applications of nonlinear operators of accretive and monotone type, Lecture Notes in Pure and Appl. Math., Dekker, New York, Volume 178 (1996), pp. 15-50 | Zbl
[2] Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces, Commun. Contemp. Math., Volume 3 (2001), pp. 615-647 | Zbl | DOI
[3] A regularization projection algorithm for various problems with nonlinear mappings in Hilbert spaces, J. Inequal. Appl., Volume 2015 (2015), pp. 1-14 | DOI | Zbl
[4] Weak and strong convergence of algorithms for the sum of two accretive operators with applications, J. Nonlinear Convex Anal., Volume 16 (2015), pp. 1321-1336 | Zbl
[5] Totally convex functions for fixed points computation and infinite dimensional optimization, Applied Optimization, Kluwer Academic Publishers, Dordrecht, 2000 | DOI
[6] Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal., Volume 2006 (2006 ), pp. 1-39 | Zbl
[7] Strong convergence theorems of modified Ishikawa iterative process with errors for an infinite family of strict pseudo-contractions, Nonlinear Anal., Volume 71 (2009), pp. 6044-6053 | DOI | Zbl
[8] An iterative row-action method for interval convex programming, J. Optim. Theory Appl., Volume 34 (1981), pp. 321-353 | Zbl | DOI
[9] Convergence analysis of an iterative algorithm for monotone operators, J. Inequal. Appl., Volume 2013 (2013 ), pp. 1-14 | DOI
[10] On the strong convergence of an iterative process for asymptotically strict pseudocontractions and equilibrium problems, Appl. Math. Comput., Volume 235 (2014), pp. 430-438 | Zbl | DOI
[11] Some results on a modified Mann iterative scheme in a reflexive Banach space, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-14 | Zbl | DOI
[12] Fixed point iterations of a pair of hemirelatively nonexpansive mappings, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-14 | DOI | Zbl
[13] Sur les inéquations variationnelles et la minimisation de fonctionnelles convexes, Ph.D. Thesis, Université de Paris, Paris, 1968
[14] Strong convergence theorems by hybrid projection methods for equilibrium problems and fixed point problems of the asymptotically quasi-\(\phi\)-nonexpansive mappings, Fixed Point Theory Appl., Volume 2011 (2011 ), pp. 1-15 | DOI | Zbl
[15] Some results on generalized equilibrium problems involving strictly pseudocontractive mappings, Acta Math. Sci. Ser. B Engl. Ed., Volume 31 (2011), pp. 2041-2057 | Zbl | DOI
[16] A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal., Volume 10 (2009), pp. 471-485 | Zbl
[17] Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim., Volume 31 (2010), pp. 22-44 | Zbl | DOI
[18] Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces, Nonlinear Anal., Volume 73 (2010), pp. 122-135 | Zbl | DOI
[19] Characterization of the subdifferentials of convex functions, Pacific J. Math., Volume 17 (1966), pp. 497-510
[20] Strong convergence theorem for quasi-Bregman strictly pseudocontractive mappings and equilibrium problems in Banach spaces, Fixed Point Theory Appl., Volume 2014 (2014 ), pp. 1-16 | DOI | Zbl
[21] Strong convergence theorems for Bregman quasi-strict pseudo-contractions in reflexive Banach spaces with applications, Fixed Point Theory Appl., Volume 2015 (2015 ), pp. 1-17 | Zbl | DOI
[22] Shrinking projection methods for systems of mixed variational inequalities of Browder type, systems of mixed equilibrium problems and fixed point problems, J. Nonlinear Funct. Anal., Volume 2014 (2014 ), pp. 1-25
[23] Iterative processes for fixed points of nonexpansive mappings, Commun. Optim. Theory, Volume 2013 (2013 ), pp. 1-7
Cité par Sources :