Fixed point theorems for (L)-type mappings in complete CAT(0) spaces
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 3, p. 964-974.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, fixed point properties for a class of more generalized nonexpansive mappings called (L)-type mappings are studied in geodesic spaces. Existence of fixed point theorem, demiclosed principle, common fixed point theorem of single-valued and set-valued are obtained in the third section. Moreover, in the last section, $\Delta$-convergence and strong convergence theorems for (L)-type mappings are proved. Our results extend the fixed point results of Suzuki’s results in 2008 and Llorens-Fuster’s results in 2011.
DOI : 10.22436/jnsa.010.03.09
Classification : 47H09, 47H10, 54E40
Keywords: (L)-type mappings, geodesic spaces, fixed point theorems, common fixed point theorems, three-step iteration scheme.

Zhou, Jing 1 ; Cui, Yunan 2

1 Department of Mathematics, Harbin Institute of Technology, Harbin 150080, P. R. China
2 Department of Mathematics, Harbin University of Science and Technology, Harbin 150080, P. R. China
@article{JNSA_2017_10_3_a8,
     author = {Zhou, Jing and Cui, Yunan},
     title = {Fixed point theorems for {(L)-type} mappings in complete {CAT(0)} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {964-974},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2017},
     doi = {10.22436/jnsa.010.03.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.09/}
}
TY  - JOUR
AU  - Zhou, Jing
AU  - Cui, Yunan
TI  - Fixed point theorems for (L)-type mappings in complete CAT(0) spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 964
EP  - 974
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.09/
DO  - 10.22436/jnsa.010.03.09
LA  - en
ID  - JNSA_2017_10_3_a8
ER  - 
%0 Journal Article
%A Zhou, Jing
%A Cui, Yunan
%T Fixed point theorems for (L)-type mappings in complete CAT(0) spaces
%J Journal of nonlinear sciences and its applications
%D 2017
%P 964-974
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.09/
%R 10.22436/jnsa.010.03.09
%G en
%F JNSA_2017_10_3_a8
Zhou, Jing; Cui, Yunan. Fixed point theorems for (L)-type mappings in complete CAT(0) spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 3, p. 964-974. doi : 10.22436/jnsa.010.03.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.09/

[1] Abkar, A.; Eslamian, M. Fixed point theorems for Suzuki generalized nonexpansive multivalued mappings in Banach spaces, Fixed Point Theory Appl., Volume 2010 (2010 ), pp. 1-10 | Zbl | DOI

[2] Abkar, A.; Eslamian, M. A fixed point theorem for generalized nonexpansive multivalued mappings, Fixed Point Theory, Volume 12 (2011), pp. 241-246

[3] Abkar, A.; Eslamian, M. Generalized nonexpansive multivalued mappings in strictly convex Banach spaces, Fixed Point Theory, Volume 14 (2013), pp. 269-280 | Zbl

[4] Bridson, M. R.; Haefliger, A. Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1999 | DOI

[5] Browder, F. E. Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc., Volume 74 (1968), pp. 660-665 | Zbl | DOI

[6] K. S. Brown Buildings, Springer-Verlag , New York, 1989 | DOI

[7] Chang, S. S.; Wang, L.; Lee, H. W. J.; Chan, C. K.; Yang, L. Demiclosed principle and \(\Delta\)-convergence theorems for total asymptotically nonexpansive mappings in CAT(0) spaces, Appl. Math. Comput., Volume 219 (2012), pp. 2611-2617 | DOI

[8] Chaoha, P.; Phon-on, A. A note on fixed point sets in CAT(0) spaces, J. Math. Anal. Appl., Volume 320 (2006), pp. 983-987 | Zbl | DOI

[9] Dhompongsa, S.; Kaewcharoen, A. Fixed point theorems for nonexpansive mappings and Suzuki-generalized nonexpansive mappings on a Banach lattice, Nonlinear Anal., Volume 71 (2009), pp. 5344-5353 | DOI | Zbl

[10] Dhompongsa, S.; Kirk, W. A.; Sims, B. Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal., Volume 65 (2006), pp. 762-772 | DOI

[11] Dhompongsa, S.; B. Panyanak On \(\Delta\)-convergence theorems in CAT(0) spaces, Comput. Math. Appl., Volume 56 (2008), pp. 2572-2579 | DOI

[12] Espínola, R.; Lorenzo, P.; Nicolae, A. Fixed points, selections and common fixed points for nonexpansive-type mappings, J. Math. Anal. Appl., Volume 382 (2011), pp. 503-515 | Zbl | DOI

[13] García-Falset, J.; Llorens-Fuster, E.; Moreno-Gálvez, E. Fixed point theory for multivalued generalized nonexpansive mappings, Appl. Anal. Discrete Math., Volume 6 (2012), pp. 265-286 | DOI

[14] García-Falset, J.; Llorens-Fuster, E.; T. Suzuki Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl., Volume 375 (2011), pp. 185-195 | DOI

[15] García-Falset, J.; Sims, B.; Smyth, M. A. The demiclosedness principle for mappings of asymptotically nonexpansive type, Houston J. Math., Volume 158 (1996), pp. 101-108

[16] Goebel, K.; Reich, S. Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1984

[17] Kaewcharoen, A.; Panyanak, B. Fixed point theorems for some generalized multivalued nonexpansive mappings, Nonlinear Anal., Volume 74 (2011), pp. 5578-5584 | DOI

[18] Kirk, W. A. Fixed point theorems in CAT(0) spaces and R-trees, Fixed Point Theory Appl., Volume 4 (2004), pp. 309-316 | DOI

[19] Kirk, W. A.; Panyanak, B. A concept of convergence in geodesic spaces, Nonlinear Anal., Volume 68 (2008), pp. 3689-3696 | DOI

[20] Kohlenbach, U.; Leuştean, L. Asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces, J. Eur. Math. Soc. (JEMS), Volume 12 (2007), pp. 71-92

[21] T. C. Lim Remarks on some fixed point theorems, Proc. Amer. Math. Soc., Volume 60 (1976), pp. 179-182 | DOI

[22] Lin, P.-K.; Tan, K.-K.; Xu, H.-K. Demiclosedness principle and asymptotic behavior for asymptotically nonexpansive mappings, Nonlinear Anal., Volume 24 (1995), pp. 929-946 | Zbl | DOI

[23] Llorens-Fuster, E.; Gálvez, E. Moreno The fixed point theory for some generalized nonexpansive mappings, Abstr. Appl. Anal., Volume 2011 (2011), pp. 1-15

[24] Gálvez, E. Moreno; Llorens-Fuster, E. The fixed point property for some generalized nonexpansive mappings in a nonreflexive Banach space, Fixed Point Theory, Volume 14 (2013), pp. 141-150 | Zbl

[25] Nanjaras, B.; Panyanak, B.; Phuengrattana, W. Fixed point theorems and convergence theorems for Suzuki-generalized nonexpansive mappings in CAT(0) spaces, Nonlinear Anal. Hybrid Syst., Volume 4 (2010), pp. 25-31 | DOI

[26] Razani, A.; Salahifard, H. Invariant approximation for CAT(0) spaces, Nonlinear Anal., Volume 72 (2010), pp. 2421-2425 | DOI | Zbl

[27] Shimizu, T.; Takahashi, W. Fixed points of multivalued mappings in certain convex metric spaces, Topol. Methods Nonlinear Anal., Volume 8 (1996), pp. 197-203 | DOI

[28] Suzuki, T. Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., Volume 340 (2008), pp. 1088-1095 | DOI

[29] Thakur, B. S.; Thakur, D.; Postolache, M. A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings, Appl. Math. Comput., Volume 275 (2016), pp. 147-155 | DOI

[30] Zuo, Z.-F.; Cui, Y.-N. Iterative approximations for generalized multivalued mappings in Banach spaces, Thai J. Math., Volume 9 (2011), pp. 333-342 | Zbl

Cité par Sources :