On second-order differential subordinations for a class of analytic functions defined by convolution
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 3, p. 954-963.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Making use of the convolution operator we introduce a new class of analytic functions in the open unit disk and investigate some subordination results.
DOI : 10.22436/jnsa.010.03.08
Classification : 30C45
Keywords: Analytic functions, univalent function, differential subordination, convex function, Hadamard product, best dominant.

Akgül, Arzu 1

1 Faculty of Arts and Sciences, Department of Mathematics, Kocaeli University, Umuttepe Campus, Izmit-Kocaeli, Turkey
@article{JNSA_2017_10_3_a7,
     author = {Akg\"ul, Arzu},
     title = {On second-order differential subordinations for a class of analytic functions defined by convolution},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {954-963},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2017},
     doi = {10.22436/jnsa.010.03.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.08/}
}
TY  - JOUR
AU  - Akgül, Arzu
TI  - On second-order differential subordinations for a class of analytic functions defined by convolution
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 954
EP  - 963
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.08/
DO  - 10.22436/jnsa.010.03.08
LA  - en
ID  - JNSA_2017_10_3_a7
ER  - 
%0 Journal Article
%A Akgül, Arzu
%T On second-order differential subordinations for a class of analytic functions defined by convolution
%J Journal of nonlinear sciences and its applications
%D 2017
%P 954-963
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.08/
%R 10.22436/jnsa.010.03.08
%G en
%F JNSA_2017_10_3_a7
Akgül, Arzu. On second-order differential subordinations for a class of analytic functions defined by convolution. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 3, p. 954-963. doi : 10.22436/jnsa.010.03.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.08/

[1] Altınkaya, S.; Yalçin, S. Coefficient estimates for two new subclasses of biunivalent functions with respect to symmetric points, J. Funct. Spaces, Volume 2015 (2015 ), pp. 1-5 | DOI | Zbl

[2] Altınkaya, S.; Yalçin, S. General properties of multivalent concave functions involving linear operator of carlson-shaffer type, Comptes rendus de lAcade’mie bulgare des Sciences, Volume 69 (2016), pp. 1533-1540 | Zbl

[3] Aouf, M. K.; Mostafa, A. O. Sandwich theorems for analytic functions defined by convolution, Acta Univ. Apulensis Math. Inform., Volume 21 (2010), pp. 7-20

[4] Aouf, M. K.; Mostafa, A. O. Subordination results for a class of multivalent non-Bazilevic analytic functions defined by linear operator, Acta Univ. Apulensis Math. Inform., Volume 31 (2012), pp. 307-320 | Zbl

[5] T. Bulboacă Differential subordinations and superordinations, Recent Results, Casa cărţii de ştiinţa , Cluj-Napoca, 2005

[6] Bulut, S. Some applications of second-order differential subordination on a class of analytic functions defined by Komatu integral operator, ISRN Math. Anal., Volume 2014 (2014 ), pp. 1-5 | DOI | Zbl

[7] Duren, P. L. Univalent functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, New York, 1983

[8] Hallenbeck, D. J.; Ruscheweyh, S. Subordination by convex functions, Proc. Amer. Math. Soc., Volume 52 (1975), pp. 191-195 | DOI

[9] Lupaş, A. A. A new comprehensive class of analytic functions defined by multiplier transformation, Math. Comput. Modelling, Volume 54 (2011), pp. 2355-2362 | DOI | Zbl

[10] Lupaş, A. A. Differential subordinations using multiplier transformation, Adv. Appl. Math. Sci., Volume 14 (2015), pp. 71-89

[11] Miller, S. S.; Mocanu, P. T. Second-order differential inequalities in the complex plane, J. Math. Anal. Appl., Volume 65 (1978), pp. 289-305 | DOI

[12] Miller, S. S.; Mocanu, P. T. Differential subordinations and univalent functions, Michigan Math. J., Volume 28 (1981), pp. 157-171 | Zbl | DOI

[13] Miller, S. S.; Mocanu, P. T. Differential subordinations, Theory and applications, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 2000

[14] Mocanu, P. T.; Bulboacă, T.; Sălăgean, G. Geometric theory of univalent functions, Casa cărţii de ştiinţa , Cluj-Napoca, 1999

[15] Oros, G.; Oros, G. I. A class of holomorphic functions II, Miron Nicolescu (19031975) and Nicolae Ciorănescu (19031957), Libertas Math., Volume 23 (2003), pp. 65-68

[16] Özkan, Ö. Some subordination results of multivalent functions defined by integral operator, J. Inequal. Appl., Volume 2007 (2007 ), pp. 1-8 | DOI

[17] Özkan, Ö.; Altntaş, O. Applications of differential subordination, Appl. Math. Lett., Volume 19 (2006), pp. 728-734 | DOI

[18] Sălăgean, G. S. Subclasses of univalent functions, Complex analysis–fifth Romanian-Finnish seminar, Part 1, Bucharest, (1981), 362–372, Lecture Notes in Math., Springer, Berlin, 1013 , 1983 | DOI

[19] Selvaraj, C.; Selvakumaran, K. A. On certain classes of multivalent functions involving a generalized differential operator, Bull. Korean Math. Soc., Volume 46 (2009), pp. 905-915 | DOI

Cité par Sources :