Voir la notice de l'article provenant de la source International Scientific Research Publications
Akgül, Arzu 1
@article{JNSA_2017_10_3_a7, author = {Akg\"ul, Arzu}, title = {On second-order differential subordinations for a class of analytic functions defined by convolution}, journal = {Journal of nonlinear sciences and its applications}, pages = {954-963}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2017}, doi = {10.22436/jnsa.010.03.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.08/} }
TY - JOUR AU - Akgül, Arzu TI - On second-order differential subordinations for a class of analytic functions defined by convolution JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 954 EP - 963 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.08/ DO - 10.22436/jnsa.010.03.08 LA - en ID - JNSA_2017_10_3_a7 ER -
%0 Journal Article %A Akgül, Arzu %T On second-order differential subordinations for a class of analytic functions defined by convolution %J Journal of nonlinear sciences and its applications %D 2017 %P 954-963 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.08/ %R 10.22436/jnsa.010.03.08 %G en %F JNSA_2017_10_3_a7
Akgül, Arzu. On second-order differential subordinations for a class of analytic functions defined by convolution. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 3, p. 954-963. doi : 10.22436/jnsa.010.03.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.08/
[1] Coefficient estimates for two new subclasses of biunivalent functions with respect to symmetric points, J. Funct. Spaces, Volume 2015 (2015 ), pp. 1-5 | DOI | Zbl
[2] General properties of multivalent concave functions involving linear operator of carlson-shaffer type, Comptes rendus de lAcade’mie bulgare des Sciences, Volume 69 (2016), pp. 1533-1540 | Zbl
[3] Sandwich theorems for analytic functions defined by convolution, Acta Univ. Apulensis Math. Inform., Volume 21 (2010), pp. 7-20
[4] Subordination results for a class of multivalent non-Bazilevic analytic functions defined by linear operator, Acta Univ. Apulensis Math. Inform., Volume 31 (2012), pp. 307-320 | Zbl
[5] Differential subordinations and superordinations, Recent Results, Casa cărţii de ştiinţa , Cluj-Napoca, 2005
[6] Some applications of second-order differential subordination on a class of analytic functions defined by Komatu integral operator, ISRN Math. Anal., Volume 2014 (2014 ), pp. 1-5 | DOI | Zbl
[7] Univalent functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, New York, 1983
[8] Subordination by convex functions, Proc. Amer. Math. Soc., Volume 52 (1975), pp. 191-195 | DOI
[9] A new comprehensive class of analytic functions defined by multiplier transformation, Math. Comput. Modelling, Volume 54 (2011), pp. 2355-2362 | DOI | Zbl
[10] Differential subordinations using multiplier transformation, Adv. Appl. Math. Sci., Volume 14 (2015), pp. 71-89
[11] Second-order differential inequalities in the complex plane, J. Math. Anal. Appl., Volume 65 (1978), pp. 289-305 | DOI
[12] Differential subordinations and univalent functions, Michigan Math. J., Volume 28 (1981), pp. 157-171 | Zbl | DOI
[13] Differential subordinations, Theory and applications, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 2000
[14] Geometric theory of univalent functions, Casa cărţii de ştiinţa , Cluj-Napoca, 1999
[15] A class of holomorphic functions II, Miron Nicolescu (19031975) and Nicolae Ciorănescu (19031957), Libertas Math., Volume 23 (2003), pp. 65-68
[16] Some subordination results of multivalent functions defined by integral operator, J. Inequal. Appl., Volume 2007 (2007 ), pp. 1-8 | DOI
[17] Applications of differential subordination, Appl. Math. Lett., Volume 19 (2006), pp. 728-734 | DOI
[18] Subclasses of univalent functions, Complex analysis–fifth Romanian-Finnish seminar, Part 1, Bucharest, (1981), 362–372, Lecture Notes in Math., Springer, Berlin, 1013 , 1983 | DOI
[19] On certain classes of multivalent functions involving a generalized differential operator, Bull. Korean Math. Soc., Volume 46 (2009), pp. 905-915 | DOI
Cité par Sources :