Extensions of Holder-type inequalities on time scales and their applications
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 3, p. 937-953.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we present some new extensions of Hölder-type inequalities on time scales via diamond-$\alpha$ integral. Moreover, the obtained results are used to generalize Minkowski’s inequality and Beckenbach-Dresher’s inequality on time scales.
DOI : 10.22436/jnsa.010.03.07
Classification : 26D15, 39A13
Keywords: Hölder-type inequality, diamond-\(\alpha\) integral, time scales, Minkowski’s inequality, Beckenbach-Dresher’s inequality.

Tian, Jing-Feng 1 ; Ha, Ming-Hu 2

1 College of Science and Technology, North China Electric Power University, Baoding, Hebei Province, 071051, P. R. China
2 School of Science, Hebei University of Engineering, Handan, Hebei Province, 056038, P. R. China
@article{JNSA_2017_10_3_a6,
     author = {Tian, Jing-Feng and Ha, Ming-Hu},
     title = {Extensions of {Holder-type} inequalities on time scales and their applications},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {937-953},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2017},
     doi = {10.22436/jnsa.010.03.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.07/}
}
TY  - JOUR
AU  - Tian, Jing-Feng
AU  - Ha, Ming-Hu
TI  - Extensions of Holder-type inequalities on time scales and their applications
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 937
EP  - 953
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.07/
DO  - 10.22436/jnsa.010.03.07
LA  - en
ID  - JNSA_2017_10_3_a6
ER  - 
%0 Journal Article
%A Tian, Jing-Feng
%A Ha, Ming-Hu
%T Extensions of Holder-type inequalities on time scales and their applications
%J Journal of nonlinear sciences and its applications
%D 2017
%P 937-953
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.07/
%R 10.22436/jnsa.010.03.07
%G en
%F JNSA_2017_10_3_a6
Tian, Jing-Feng; Ha, Ming-Hu. Extensions of Holder-type inequalities on time scales and their applications. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 3, p. 937-953. doi : 10.22436/jnsa.010.03.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.07/

[1] Abramovich, S.; Pečarić, J.; Varošanec, S. Sharpening Hölder’s and Popoviciu’s inequalities via functionals, Rocky Mountain J. Math., Volume 34 (2004), pp. 793-810 | DOI | Zbl

[2] Abramovich, S.; Pečarić, J.; Varošanec, S. Continuous sharpening of Hölder’s and Minkowski’s inequalities, Math. Inequal. Appl., Volume 8 (2005), pp. 179-190 | Zbl | DOI

[3] Agarwal, R.; Bohner, M.; Peterson, A. Inequalities on time scales: a survey , Math. Inequal. Appl., Volume 4 (2001), pp. 535-557 | DOI | Zbl

[4] Bohner, M.; Peterson, A. Dynamic equations on time scales, An introduction with applications. Birkhäuser Boston, Inc., Boston, MA, 2001

[5] Bohner, M.; Peterson, A.; Eds. Advances in dynamic equations on time scales, Birkhäuser , Boston, Mass, USA, 2003 | DOI

[6] Chen, G.-S.; Chen, Z. A functional generalization of the reverse Hölder integral inequality on time scales, Math. Comput. Modelling, Volume 54 (2011), pp. 2939-2942 | Zbl | DOI

[7] Hardy, G. H.; Littlewood, J. E.; Pólya, G. Inequalities, 2d ed, Cambridge, at the University Press, , 1952

[8] Hilger, S. Ein maßkettenkalkül mit anwendung auf zentrumsmannigfaltigkeiten, Ph.D. thesis, Universität Würzburg, Würzburg, Germany, 1988

[9] Hilger, S. Analysis on measure chains—a unified approach to continuous and discrete calculus, Results Math., Volume 18 (1990), pp. 18-56 | DOI | Zbl

[10] Hilger, S. Differential and difference calculus—unified, Proceedings of the Second World Congress of Nonlinear Analysts, Part 5, Athens, (1996), Nonlinear Anal., Volume 30 (1997), pp. 2683-2694 | Zbl | DOI

[11] Kuang, J. Applied inequalities, Shandong Science Press, Jinan, 2003

[12] Liu, B.-D. Random fuzzy dependent-chance programming and its hybrid intelligent algorithm, Inform. Sci., Volume 141 (2002), pp. 259-271 | DOI | Zbl

[13] Matkowski, J. A converse of the Hölder inequality theorem, Math. Inequal. Appl., Volume 12 (2009), pp. 21-32 | DOI

[14] Mitrinović, D. S. Analytic inequalities, In cooperation with P. M. Vasić, Die Grundlehren der mathematischen Wissenschaften, Band 165 Springer-Verlag, New York-Berlin, 1970 | DOI

[15] Özkan, U. M.; Sarikaya, M. Z.; Yildirim, H. Extensions of certain integral inequalities on time scales, Appl. Math. Lett., Volume 21 (2008), pp. 993-1000 | DOI | Zbl

[16] Jr., J. W. Rogers; Sheng, Q. Notes on the diamond-\(\alpha\) dynamic derivative on time scales, J. Math. Anal. Appl., Volume 326 (2007), pp. 228-241 | DOI | Zbl

[17] Sheng, Q.; Fadag, M.; Henderson, J.; Davis, J. M. An exploration of combined dynamic derivatives on time scales and their applications, Nonlinear Anal. Real World Appl., Volume 7 (2006), pp. 395-413 | Zbl | DOI

[18] Tian, J.-F. New property of a generalized Hölder’s inequality and its applications, Inform. Sci., Volume 288 (2014), pp. 45-54 | DOI | Zbl

[19] Tian, J.-F. Properties of generalized Hölder’s inequalities, J. Math. Inequal., Volume 9 (2015), pp. 473-480 | DOI

[20] Tian, J.-F.; Ha, M.-H. Some new properties of generalized Hölder’s inequalities, J. Nonlinear Sci. Appl., Volume 10 (2016), pp. 3638-3646

[21] Tian, J.-F.; Ha, M.-H. Properties of generalized sharp Hölder’s inequalities, J. Math. Inequal., Volume 11 (2017), pp. 511-525 | Zbl | DOI

[22] Wong, F.-H.; Yeh, C.-C.; Lian, W.-C. An extension of Jensen’s inequality on time scales, Adv. Dyn. Syst. Appl., Volume 1 (2006), pp. 113-120 | Zbl

[23] Wong, F.-H.; Yeh, C.-C.; Yu, S.-L.; Hong, C.-H. Young’s inequality and related results on time scales, Appl. Math. Lett., Volume 18 (2005), pp. 983-988 | DOI | Zbl

[24] Wu, S.-H. Generalization of a sharp Hölder’s inequality and its application, J. Math. Anal. Appl., Volume 332 (2007), pp. 741-750 | DOI | Zbl

[25] Wu, S.-H. A new sharpened and generalized version of Hölder’s inequality and its applications, Appl. Math. Comput., Volume 197 (2008), pp. 708-714 | Zbl | DOI

[26] Yang, W.-G. A functional generalization of diamond-\(\alpha\) integral Hölder’s inequality on time scales, Appl. Math. Lett., Volume 23 (2010), pp. 1208-1212 | Zbl | DOI

Cité par Sources :