Voir la notice de l'article provenant de la source International Scientific Research Publications
Tian, Jing-Feng 1 ; Ha, Ming-Hu 2
@article{JNSA_2017_10_3_a6, author = {Tian, Jing-Feng and Ha, Ming-Hu}, title = {Extensions of {Holder-type} inequalities on time scales and their applications}, journal = {Journal of nonlinear sciences and its applications}, pages = {937-953}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2017}, doi = {10.22436/jnsa.010.03.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.07/} }
TY - JOUR AU - Tian, Jing-Feng AU - Ha, Ming-Hu TI - Extensions of Holder-type inequalities on time scales and their applications JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 937 EP - 953 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.07/ DO - 10.22436/jnsa.010.03.07 LA - en ID - JNSA_2017_10_3_a6 ER -
%0 Journal Article %A Tian, Jing-Feng %A Ha, Ming-Hu %T Extensions of Holder-type inequalities on time scales and their applications %J Journal of nonlinear sciences and its applications %D 2017 %P 937-953 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.07/ %R 10.22436/jnsa.010.03.07 %G en %F JNSA_2017_10_3_a6
Tian, Jing-Feng; Ha, Ming-Hu. Extensions of Holder-type inequalities on time scales and their applications. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 3, p. 937-953. doi : 10.22436/jnsa.010.03.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.07/
[1] Sharpening Hölder’s and Popoviciu’s inequalities via functionals, Rocky Mountain J. Math., Volume 34 (2004), pp. 793-810 | DOI | Zbl
[2] Continuous sharpening of Hölder’s and Minkowski’s inequalities, Math. Inequal. Appl., Volume 8 (2005), pp. 179-190 | Zbl | DOI
[3] Inequalities on time scales: a survey , Math. Inequal. Appl., Volume 4 (2001), pp. 535-557 | DOI | Zbl
[4] Dynamic equations on time scales, An introduction with applications. Birkhäuser Boston, Inc., Boston, MA, 2001
[5] Advances in dynamic equations on time scales, Birkhäuser , Boston, Mass, USA, 2003 | DOI
[6] A functional generalization of the reverse Hölder integral inequality on time scales, Math. Comput. Modelling, Volume 54 (2011), pp. 2939-2942 | Zbl | DOI
[7] Inequalities, 2d ed, Cambridge, at the University Press, , 1952
[8] Ein maßkettenkalkül mit anwendung auf zentrumsmannigfaltigkeiten, Ph.D. thesis, Universität Würzburg, Würzburg, Germany, 1988
[9] Analysis on measure chains—a unified approach to continuous and discrete calculus, Results Math., Volume 18 (1990), pp. 18-56 | DOI | Zbl
[10] Differential and difference calculus—unified, Proceedings of the Second World Congress of Nonlinear Analysts, Part 5, Athens, (1996), Nonlinear Anal., Volume 30 (1997), pp. 2683-2694 | Zbl | DOI
[11] Applied inequalities, Shandong Science Press, Jinan, 2003
[12] Random fuzzy dependent-chance programming and its hybrid intelligent algorithm, Inform. Sci., Volume 141 (2002), pp. 259-271 | DOI | Zbl
[13] A converse of the Hölder inequality theorem, Math. Inequal. Appl., Volume 12 (2009), pp. 21-32 | DOI
[14] Analytic inequalities, In cooperation with P. M. Vasić, Die Grundlehren der mathematischen Wissenschaften, Band 165 Springer-Verlag, New York-Berlin, 1970 | DOI
[15] Extensions of certain integral inequalities on time scales, Appl. Math. Lett., Volume 21 (2008), pp. 993-1000 | DOI | Zbl
[16] Notes on the diamond-\(\alpha\) dynamic derivative on time scales, J. Math. Anal. Appl., Volume 326 (2007), pp. 228-241 | DOI | Zbl
[17] An exploration of combined dynamic derivatives on time scales and their applications, Nonlinear Anal. Real World Appl., Volume 7 (2006), pp. 395-413 | Zbl | DOI
[18] New property of a generalized Hölder’s inequality and its applications, Inform. Sci., Volume 288 (2014), pp. 45-54 | DOI | Zbl
[19] Properties of generalized Hölder’s inequalities, J. Math. Inequal., Volume 9 (2015), pp. 473-480 | DOI
[20] Some new properties of generalized Hölder’s inequalities, J. Nonlinear Sci. Appl., Volume 10 (2016), pp. 3638-3646
[21] Properties of generalized sharp Hölder’s inequalities, J. Math. Inequal., Volume 11 (2017), pp. 511-525 | Zbl | DOI
[22] An extension of Jensen’s inequality on time scales, Adv. Dyn. Syst. Appl., Volume 1 (2006), pp. 113-120 | Zbl
[23] Young’s inequality and related results on time scales, Appl. Math. Lett., Volume 18 (2005), pp. 983-988 | DOI | Zbl
[24] Generalization of a sharp Hölder’s inequality and its application, J. Math. Anal. Appl., Volume 332 (2007), pp. 741-750 | DOI | Zbl
[25] A new sharpened and generalized version of Hölder’s inequality and its applications, Appl. Math. Comput., Volume 197 (2008), pp. 708-714 | Zbl | DOI
[26] A functional generalization of diamond-\(\alpha\) integral Hölder’s inequality on time scales, Appl. Math. Lett., Volume 23 (2010), pp. 1208-1212 | Zbl | DOI
Cité par Sources :