Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 3, p. 929-936.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In the article, we prove that the double inequality
$25/16\varepsilon(r)/S_{5/2,2}(1,\acute{r})\pi/2,$
holds for all $r \in (0, 1)$ with the best possible constants $25/16$ and $\pi/2$, where $\acute{r}=(1-r^2)^{1/2}, \varepsilon(r)=\int^{\pi/2}_0\sqrt{1-r^2\sin^2(t)}dt$ , is the complete elliptic integral of the second kind and $S_{p,q}(a,b)=[q(a^p-b^p)/(p(a^q-b^q))]^{1/(p-q)}$, is the Stolarsky mean of a and b.
DOI : 10.22436/jnsa.010.03.06
Classification : 33E05, 26D15, 26E60
Keywords: Gaussian hypergeometric function, complete elliptic integral, Stolarsky mean.

Yang, Zhen-Hang 1 ; Chu, Yu-Ming 2 ; Zhang, Xiao-Hui 3

1 School of Mathematics and Computation Sciences, Hunan City University, Yiyang 413000, China;Customer Service Center, State Grid Zhejiang Electric Power Research Institute, Hangzhou 310009, China
2 School of Mathematics and Computation Sciences, Hunan City University, Yiyang 413000, China
3 Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou 310018, China
@article{JNSA_2017_10_3_a5,
     author = {Yang, Zhen-Hang and Chu, Yu-Ming and Zhang, Xiao-Hui},
     title = {Sharp {Stolarsky} mean bounds for the complete elliptic integral of the second kind},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {929-936},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2017},
     doi = {10.22436/jnsa.010.03.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.06/}
}
TY  - JOUR
AU  - Yang, Zhen-Hang
AU  - Chu, Yu-Ming
AU  - Zhang, Xiao-Hui
TI  - Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 929
EP  - 936
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.06/
DO  - 10.22436/jnsa.010.03.06
LA  - en
ID  - JNSA_2017_10_3_a5
ER  - 
%0 Journal Article
%A Yang, Zhen-Hang
%A Chu, Yu-Ming
%A Zhang, Xiao-Hui
%T Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind
%J Journal of nonlinear sciences and its applications
%D 2017
%P 929-936
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.06/
%R 10.22436/jnsa.010.03.06
%G en
%F JNSA_2017_10_3_a5
Yang, Zhen-Hang; Chu, Yu-Ming; Zhang, Xiao-Hui. Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 3, p. 929-936. doi : 10.22436/jnsa.010.03.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.06/

[1] Abramowitz, M.; Stegun, I. A. Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964

[2] Barnard, R. W.; Pearce, K.; Richards, K. C. A monotonicity property involving \(_3F_2\) and comparisons of the classical approximations of elliptical arc length, SIAM J. Math. Anal., Volume 32 (2000), pp. 403-419 | Zbl | DOI

[3] Biernacki, M.; J. Krzyz˙ On the monotonity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae Curie-Skłodowska. Sect. A., Volume 9 (1955), pp. 135-147 | Zbl

[4] Chu, Y.-M.; Wang, M- K. Optimal Lehmer mean bounds for the Toader mean, Results Math., Volume 61 (2012), pp. 223-229 | DOI | Zbl

[5] Chu, Y.-M.; Wang, M.-K.; Qiu, S.-L.; Jiang, Y.-P. Bounds for complete elliptic integrals of the second kind with applications, Comput. Math. Appl., Volume 63 (2012), pp. 1177-1184 | DOI

[6] Czinder, P.; Páles, Z. Minkowski-type inequalities for two variable Stolarsky means, Acta Sci. Math. (Szeged), Volume 69 (2003), pp. 27-47 | Zbl

[7] Czinder, P.; Páles, Z. An extension of the Hermite-Hadamard inequality and an application for Gini and Stolarsky means, JIPAM. J. Inequal. Pure Appl. Math., Volume 5 (2004), pp. 1-8 | Zbl

[8] Czinder, P.; Páles, Z. Some comparison inequalities for Gini and Stolarsky means, Math. Inequal. Appl., Volume 9 (2006), pp. 607-616 | DOI | Zbl

[9] Losonczi, L. Ratio of Stolarsky means: monotonicity and comparison, Publ. Math. Debrecen, Volume 75 (2009), pp. 221-238 | Zbl

[10] Neuman, E.; Páles, Z. On comparison of Stolarsky and Gini means, J. Math. Anal. Appl., Volume 278 (2003), pp. 274-284 | DOI | Zbl

[11] Neuman, E.; Sándor, J. Inequalities involving Stolarsky and Gini means, Math. Pannon, Volume 14 (2003), pp. 29-44

[12] Olver, F. W. J.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W. (Ed.) NIST handbook of mathematical functions, With 1 CD-ROM (Windows, Macintosh and UNIX). U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010

[13] Qiu, S.-L.; Shen, J.-M. On two problems concerning means, (Chinese) J. Hangzhou Inst. Electron. Eng., Volume 17 (1997), pp. 1-7

[14] Stolarsky, K. B. Generalizations of the logarithmic mean, Math. Mag., Volume 48 (1975), pp. 87-92 | DOI

Cité par Sources :