Voir la notice de l'article provenant de la source International Scientific Research Publications
$25/16\varepsilon(r)/S_{5/2,2}(1,\acute{r})\pi/2,$ |
Yang, Zhen-Hang 1 ; Chu, Yu-Ming 2 ; Zhang, Xiao-Hui 3
@article{JNSA_2017_10_3_a5, author = {Yang, Zhen-Hang and Chu, Yu-Ming and Zhang, Xiao-Hui}, title = {Sharp {Stolarsky} mean bounds for the complete elliptic integral of the second kind}, journal = {Journal of nonlinear sciences and its applications}, pages = {929-936}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2017}, doi = {10.22436/jnsa.010.03.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.06/} }
TY - JOUR AU - Yang, Zhen-Hang AU - Chu, Yu-Ming AU - Zhang, Xiao-Hui TI - Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 929 EP - 936 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.06/ DO - 10.22436/jnsa.010.03.06 LA - en ID - JNSA_2017_10_3_a5 ER -
%0 Journal Article %A Yang, Zhen-Hang %A Chu, Yu-Ming %A Zhang, Xiao-Hui %T Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind %J Journal of nonlinear sciences and its applications %D 2017 %P 929-936 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.06/ %R 10.22436/jnsa.010.03.06 %G en %F JNSA_2017_10_3_a5
Yang, Zhen-Hang; Chu, Yu-Ming; Zhang, Xiao-Hui. Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 3, p. 929-936. doi : 10.22436/jnsa.010.03.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.06/
[1] Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964
[2] A monotonicity property involving \(_3F_2\) and comparisons of the classical approximations of elliptical arc length, SIAM J. Math. Anal., Volume 32 (2000), pp. 403-419 | Zbl | DOI
[3] On the monotonity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae Curie-Skłodowska. Sect. A., Volume 9 (1955), pp. 135-147 | Zbl
[4] Optimal Lehmer mean bounds for the Toader mean, Results Math., Volume 61 (2012), pp. 223-229 | DOI | Zbl
[5] Bounds for complete elliptic integrals of the second kind with applications, Comput. Math. Appl., Volume 63 (2012), pp. 1177-1184 | DOI
[6] Minkowski-type inequalities for two variable Stolarsky means, Acta Sci. Math. (Szeged), Volume 69 (2003), pp. 27-47 | Zbl
[7] An extension of the Hermite-Hadamard inequality and an application for Gini and Stolarsky means, JIPAM. J. Inequal. Pure Appl. Math., Volume 5 (2004), pp. 1-8 | Zbl
[8] Some comparison inequalities for Gini and Stolarsky means, Math. Inequal. Appl., Volume 9 (2006), pp. 607-616 | DOI | Zbl
[9] Ratio of Stolarsky means: monotonicity and comparison, Publ. Math. Debrecen, Volume 75 (2009), pp. 221-238 | Zbl
[10] On comparison of Stolarsky and Gini means, J. Math. Anal. Appl., Volume 278 (2003), pp. 274-284 | DOI | Zbl
[11] Inequalities involving Stolarsky and Gini means, Math. Pannon, Volume 14 (2003), pp. 29-44
[12] (Ed.) NIST handbook of mathematical functions, With 1 CD-ROM (Windows, Macintosh and UNIX). U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010
[13] On two problems concerning means, (Chinese) J. Hangzhou Inst. Electron. Eng., Volume 17 (1997), pp. 1-7
[14] Generalizations of the logarithmic mean, Math. Mag., Volume 48 (1975), pp. 87-92 | DOI
Cité par Sources :