Positive and negative solutions of impulsive functional differential equations
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 3, p. 922-928.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper considers the global existence of positive and negative solutions for impulsive functional differential equations (IFDEs). First, we introduce the concept of "-unstability to IFDEs and establish some sufficient conditions to guarantee the "-unstability via Lyapunov-Razumikhin method. Based on the obtained results, we present some sufficient conditions for the global existence of positive and negative solutions of IFDEs. An example is also given to demonstrate the effectiveness of the results.
DOI : 10.22436/jnsa.010.03.05
Classification : 34K20, 34K45
Keywords: Impulsive functional differential equations (IFDEs), global existence, Lyapunov-Razumikhin method, positive solution, negative solution.

Ding, Yanhui 1 ; Chen, Min 2

1 School of Information Science and Engineering, Shandong Normal University, Ji’nan, 250014, P. R. China
2 Zaozhuang Urban Utilities and Landscaping Bureau, Shandong, 277800, P. R. China
@article{JNSA_2017_10_3_a4,
     author = {Ding, Yanhui and Chen, Min},
     title = {Positive and negative solutions of impulsive functional differential equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {922-928},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2017},
     doi = {10.22436/jnsa.010.03.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.05/}
}
TY  - JOUR
AU  - Ding, Yanhui
AU  - Chen, Min
TI  - Positive and negative solutions of impulsive functional differential equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 922
EP  - 928
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.05/
DO  - 10.22436/jnsa.010.03.05
LA  - en
ID  - JNSA_2017_10_3_a4
ER  - 
%0 Journal Article
%A Ding, Yanhui
%A Chen, Min
%T Positive and negative solutions of impulsive functional differential equations
%J Journal of nonlinear sciences and its applications
%D 2017
%P 922-928
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.05/
%R 10.22436/jnsa.010.03.05
%G en
%F JNSA_2017_10_3_a4
Ding, Yanhui; Chen, Min. Positive and negative solutions of impulsive functional differential equations. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 3, p. 922-928. doi : 10.22436/jnsa.010.03.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.05/

[1] Ballinger, G.; Liu, X.-Z. Existence and uniqueness results for impulsive delay differential equations, Differential equations and dynamical systems, Waterloo, ON, (1997), Dynam. Contin. Discrete Impuls. Systems, Volume 5 (1999), pp. 579-591

[2] Baınov, D.; Simeonov, P. S. Systems with impulse effect, Stability, theory and applications , Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1989 | Zbl

[3] Baınov, D.; Simeonov, P. S. Theory of impulsive differential equations: periodic solutions and applications, Longman, Harlow, 1993

[4] Fu, X.-L.; Yan, B.-Q.; Liu, Y.-S. Introduction of impulsive differential systems, Science Press, Beijing, 2005

[5] Gopalsamy, K.; Zhang, B. G. On delay differential equations with impulses, J. Math. Anal. Appl., Volume 139 (1989), pp. 110-122 | DOI

[6] Lakshmikantham, V.; Baınov, D.; Simeonov, P. S. Theory of impulsive differential equations, Series in Modern Applied Mathematics, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989

[7] Lakshmikantham, V.; Leela, S.; Kaul, S. Comparison principle for impulsive differential equations with variable times and stability theory , Nonlinear Anal., Volume 22 (1994), pp. 499-503 | DOI

[8] Lakshmikantham, V.; Liu, X.-Z. Stability for impulsive differential systems in terms of two measures, Appl. Math. Comput, Volume 29 (1989), p. 89-9 | DOI

[9] Li, X.-D.; Rakkiyappan, R.; Velmurugan, G. Dissipativity analysis of memristor-based complex-valued neural networks with time-varying delays, Inform. Sci., Volume 294 (2015), pp. 645-665 | Zbl | DOI

[10] Li, X.-D.; Song, S.-J. Impulsive control for existence, uniqueness, and global stability of periodic solutions of recurrent neural networks with discrete and continuously distributed delays, IEEE Trans. Neural Netw. Learn. Syst., Volume 24 (2013), pp. 868-877 | DOI

[11] Li, X.-D.; Wu, J.-H. Stability of nonlinear differential systems with state-dependent delayed impulses, Automatica J. IFAC, Volume 64 (2016), pp. 63-69 | Zbl | DOI

[12] Liu, X.-Z.; G. Ballinger Boundedness for impulsive delay differential equations and applications to population growth models , Nonlinear Anal., Volume 53 (2003), pp. 1041-1062 | DOI

[13] Liu, X.-Z.; Wang, Q. The method of Lyapunov functionals and exponential stability of impulsive systems with time delay, Nonlinear Anal., Volume 66 (2007), pp. 1465-1484 | DOI

[14] Liu, X.-Z.; Z.-G. Zhang Uniform asymptotic stability of impulsive discrete systems with time delay, Nonlinear Anal., Volume 74 (2011), pp. 4941-4950 | DOI

[15] Shen, J.-H.; Yan, J.-R. Razumikhin type stability theorems for impulsive functional-differential equations, Nonlinear Anal., Volume 33 (1998), pp. 519-531 | DOI

[16] Stamova, I.; G. T. Stamov Lyapunov-Razumikhin method for impulsive functional differential equations and applications to the population dynamics, J. Comput. Appl. Math., Volume 130 (2001), pp. 163-171 | DOI | Zbl

Cité par Sources :