Hybrid steepest-descent methods for systems of variational inequalities with constraints of variational inclusions and convex minimization problems
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 3, p. 874-901.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Two hybrid steepest-descent schemes (implicit and explicit) for finding a solution of the general system of variational inequalities (in short, GSVI) with the constraints of finitely many variational inclusions for maximal monotone and inversestrongly monotone mappings and a minimization problem for a convex and continuously Fréchet differentiable functional (in short, CMP) have been presented in a real Hilbert space. We establish the strong convergence of these two hybrid steepestdescent schemes to the same solution of the GSVI, which is also a common solution of these finitely many variational inclusions and the CMP. Our results extend, improve, complement and develop the corresponding ones given by some authors recently in this area.
DOI : 10.22436/jnsa.010.03.03
Classification : 49J30, 47H09, 47J20, 49M05
Keywords: Hybrid steepest-descent method, system of variational inequalities, variational inclusion, monotone mapping.

Kong, Zhao-Rong 1 ; Ceng, Lu-Chuan 2 ; Liou, Yeong-Cheng 3 ; Wen, Ching-Feng 4

1 Economics Management Department, Shanghai University of Political Science and Law, Shanghai 201701, China
2 Department of Mathematics, Shanghai Normal University, and Scientific Computing Key Laboratory of Shanghai Universities, Shanghai 200234, China
3 Department of Healthcare Administration and Medical Informatics, and Research Center for Nonlinear Analysis and Optimization, Kaohsiung Medical University, Kaohsiung 807, Taiwan
4 Center for Fundamental Science, and Research Center for Nonlinear Analysis and Optimization, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan;Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
@article{JNSA_2017_10_3_a2,
     author = {Kong, Zhao-Rong and Ceng, Lu-Chuan and Liou, Yeong-Cheng and Wen, Ching-Feng},
     title = {Hybrid steepest-descent methods for systems of variational inequalities with constraints of variational inclusions and convex minimization problems},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {874-901},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2017},
     doi = {10.22436/jnsa.010.03.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.03/}
}
TY  - JOUR
AU  - Kong, Zhao-Rong
AU  - Ceng, Lu-Chuan
AU  - Liou, Yeong-Cheng
AU  - Wen, Ching-Feng
TI  - Hybrid steepest-descent methods for systems of variational inequalities with constraints of variational inclusions and convex minimization problems
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 874
EP  - 901
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.03/
DO  - 10.22436/jnsa.010.03.03
LA  - en
ID  - JNSA_2017_10_3_a2
ER  - 
%0 Journal Article
%A Kong, Zhao-Rong
%A Ceng, Lu-Chuan
%A Liou, Yeong-Cheng
%A Wen, Ching-Feng
%T Hybrid steepest-descent methods for systems of variational inequalities with constraints of variational inclusions and convex minimization problems
%J Journal of nonlinear sciences and its applications
%D 2017
%P 874-901
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.03/
%R 10.22436/jnsa.010.03.03
%G en
%F JNSA_2017_10_3_a2
Kong, Zhao-Rong; Ceng, Lu-Chuan; Liou, Yeong-Cheng; Wen, Ching-Feng. Hybrid steepest-descent methods for systems of variational inequalities with constraints of variational inclusions and convex minimization problems. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 3, p. 874-901. doi : 10.22436/jnsa.010.03.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.03.03/

[1] Al-Mazrooei, A. E.; Latif, A.; Yao, J.-C. Solving generalized mixed equilibria, variational inequalities, and constrained convex minimization, Abstr. Appl. Anal., Volume 2014 (2014 ), pp. 1-26

[2] Al-Mazrooei, A. E.; Alofi, A. S. M.; Latif, A.; Yao, J.-C. Generalized mixed equilibria, variational inclusions, and fixed point problems, Abstr. Appl. Anal., Volume 2014 (2014 ), pp. 1-16

[3] Byrne, C. A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems, Volume 20 (2004), pp. 103-120 | Zbl | DOI

[4] Ceng, L.-C.; Ansari, Q. H.; Wong, M.-M.; Yao, J.-C. Mann type hybrid extragradient method for variational inequalities, variational inclusions and fixed point problems, Fixed Point Theory, Volume 13 (2012), pp. 403-422 | Zbl

[5] Ceng, L.-C.; Ansari, Q. H.; Yao, J.-C. Relaxed extragradient iterative methods for variational inequalities, Appl. Math. Comput., Volume 218 (2011), pp. 1112-1123 | DOI

[6] Ceng, L.-C.; Ansari, Q. H.; Yao, J.-C. Some iterative methods for finding fixed points and for solving constrained convex minimization problems, Nonlinear Anal., Volume 74 (2011), pp. 5286-5302 | DOI | Zbl

[7] Ceng, L.-C.; Guu, S.-M.; Yao, J.-C. A general composite iterative algorithm for nonexpansive mappings in Hilbert spaces, Comput. Math. Appl., Volume 61 (2011), pp. 2447-2455 | Zbl | DOI

[8] Ceng, L.-C.; Guu, S.-M.; Yao, J.-C.; spaces, / A general composite iterative algorithm for nonexpansive mappings in Hilbert; Appl., / Comput. Math.; (2011), / 61; 2447–2455. Finding common solutions of a variational inequality, a general system of variational inequalities, and a fixed-point problem via a hybrid extragradient method, Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-22 | DOI | Zbl

[9] Ceng, L.-C.; Petrus¸el, A.; Yao, J.-C. Relaxed extragradient methods with regularization for general system of variational inequalities with constraints of split feasibility and fixed point problems, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-25 | Zbl

[10] Ceng, L.-C.; Wang, C.-Y.; Yao, J.-C. Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Methods Oper. Res., Volume 67 (2008), pp. 375-390 | DOI

[11] Ceng, L.-C.; M.-M.Wong Relaxed entragradient method for finding a common element of systems of variational inequalities and fixed point problems, Taiwanese J. Math., Volume 17 (2013), pp. 701-724 | DOI

[12] Goebel, K.; Kirk, W. A. Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1990 | DOI

[13] Jung, J. S. A general composite iterative method for strictly pseudocontractive mappings in Hilbert spaces , Fixed Point Theory Appl., Volume 2014 (2014 ), pp. 1-21 | DOI | Zbl

[14] Korpelevich, G. M. The extragradient method for finding saddle points and other problems, Matecon, Volume 12 (1976), pp. 747-756

[15] Latif, A.; Al-Mazrooei, A. E.; Dehaish, B. A. Bin; Yao, J.-C. Hybrid viscosity approximation methods for general systems of variational inequalities in Banach spaces, Fixed Point Theory Appl., Volume 2013 (2013 ), pp. 1-22 | DOI | Zbl

[16] Lions, J.-L. Quelques méthodes de résolution des problémes aux limites non linéaires, (French) Dunod; Gauthier-Villars, Paris, 1969

[17] Marino, G.; Xu, H.-K. A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., Volume 318 (2006), pp. 43-52 | DOI

[18] Moudafi, A. Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., Volume 241 (2000), pp. 46-55 | DOI

[19] Rockafellar, R. T. Monotone operators and the proximal point algorithm, SIAM J. Control Optimization, Volume 14 (1976), pp. 877-898 | DOI

[20] Takahashi, W.; Wong, N.-C.; Yao, J.-C. Weak and strong convergence theorems for commutative families of positively homogeneous nonexpansive mappings in Banach spaces, J. Nonlinear Convex Anal., Volume 15 (2014), pp. 557-572 | Zbl

[21] Xu, H.-K. Iterative algorithms for nonlinear operators, J. London Math. Soc., Volume 66 (2002), pp. 240-256 | DOI

[22] Xu, H.-K. Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., Volume 298 (2004), pp. 279-291 | DOI

[23] I. Yamada The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings, Inherently parallel algorithms in feasibility and optimization and their applications, Haifa, (2000), 473–504, Stud. Comput. Math., North-Holland, Amsterdam,8, 2001 | DOI

[24] Yao, Y.-H.; Chen, R.-D.; Xu, H.-K. Schemes for finding minimum-norm solutions of variational inequalities, Nonlinear Anal., Volume 72 (2010), pp. 3447-3456 | Zbl | DOI

[25] Yao, Y.-H.; Liou, Y.-C.; Kang, S. M. Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method, Comput. Math. Appl., Volume 59 (2010), pp. 3472-3480 | Zbl | DOI

[26] Yao, Y.-H.; Liou, Y.-C.; Yao, J.-C. Finding the minimum norm common element of maximal monotone operators and nonexpansive mappings without involving projection, J. Nonlinear Convex Anal., Volume 16 (2015), pp. 835-854 | Zbl

[27] Yao, Y.-H.; Noor, M. A.; Liou, Y.-C. Strong convergence of a modified extragradient method to the minimum-norm solution of variational inequalities, Abstr. Appl. Anal., Volume 2012 (2012 ), pp. 1-9 | Zbl

[28] Yao, Y.-H.; Postolache, M.; Liou, Y.-C.; Yao, Z.-S. Construction algorithms for a class of monotone variational inequalities, Optim. Lett., Volume 10 (2016), pp. 1519-1528 | DOI | Zbl

[29] Zeng, L.-C.; Guu, S.-M.; Yao, J.-C. Characterization of H-monotone operators with applications to variational inclusions, Comput. Math. Appl., Volume 50 (2005), pp. 329-337 | Zbl | DOI

Cité par Sources :