From fuzzy metric spaces to modular metric spaces: a fixed point approach
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 2, p. 451-464.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We propose an intuitive theorem which uses some concepts of auxiliary functions for establishing existence and uniqueness of the fixed point of a self-mapping. First we work in the setting of fuzzy metric spaces in the sense of George and Veeramani, then we deduce some consequences in modular metric spaces. Finally, a sample homotopy result is derived making use of the main theorem.
DOI : 10.22436/jnsa.010.02.11
Classification : 54H25, 54A40
Keywords: Fixed point, fuzzy metric space, modular metric space.

Tchier, Fairouz 1 ; Vetro, Calogero 2 ; Vetro, Francesca 3

1 Mathematics Department, College of Science (Malaz), King Saud University, P. O. Box 22452, Riyadh, King Saudi Arabia
2 Department of Mathematics and Computer Science, University of Palermo, Via Archirafi 34, 90123, Palermo, Italy
3 Department of Energy, Information Engineering and Mathematical Models (DEIM), University of Palermo, Viale delle Scienze, 90128, Palermo, Italy
@article{JNSA_2017_10_2_a10,
     author = {Tchier, Fairouz and Vetro, Calogero and Vetro, Francesca},
     title = {From fuzzy metric spaces to modular metric spaces: a fixed point approach},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {451-464},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2017},
     doi = {10.22436/jnsa.010.02.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.11/}
}
TY  - JOUR
AU  - Tchier, Fairouz
AU  - Vetro, Calogero
AU  - Vetro, Francesca
TI  - From fuzzy metric spaces to modular metric spaces: a fixed point approach
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 451
EP  - 464
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.11/
DO  - 10.22436/jnsa.010.02.11
LA  - en
ID  - JNSA_2017_10_2_a10
ER  - 
%0 Journal Article
%A Tchier, Fairouz
%A Vetro, Calogero
%A Vetro, Francesca
%T From fuzzy metric spaces to modular metric spaces: a fixed point approach
%J Journal of nonlinear sciences and its applications
%D 2017
%P 451-464
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.11/
%R 10.22436/jnsa.010.02.11
%G en
%F JNSA_2017_10_2_a10
Tchier, Fairouz; Vetro, Calogero; Vetro, Francesca. From fuzzy metric spaces to modular metric spaces: a fixed point approach. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 2, p. 451-464. doi : 10.22436/jnsa.010.02.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.11/

[1] Abdou, A. A. N.; Khamsi, M. A. Fixed point results of pointwise contractions in modular metric spaces, Fixed Point Theory Appl., Volume 2013 (2013 ), pp. 1-11 | DOI | Zbl

[2] Agarwal, R. P.; Meehan, M.; D. O’Regan Fixed point theory and applications, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2002

[3] Argoubi, H.; Samet, B.; Vetro, C. Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 1082-1094 | Zbl

[4] Azadifar, B.; Sadeghi, G.; Saadati, R.; Park, C.-K. Integral type contractions in modular metric spaces, J. Inequal. Appl., Volume 2013 (2013), pp. 1-14 | DOI

[5] V. V. Chistyakov Modular metric spaces, I, Basic concepts, Nonlinear Anal., Volume 72 (2010), pp. 1-14 | DOI

[6] Chistyakov, V. V. Modular metric spaces,II, Application to superposition operators, Nonlinear Anal., Volume 72 (2010), pp. 15-30 | Zbl | DOI

[7] Bari, C. Di; Vetro, C. Fixed points, attractors and weak fuzzy contractive mappings in a fuzzy metric space, J. Fuzzy Math., Volume 13 (2005), pp. 973-982 | Zbl

[8] George, A.; Veeramani, P. On some results in fuzzy metric spaces, Fuzzy Sets and Systems, Volume 64 (1994), pp. 395-399 | DOI

[9] Gregori, V.; López-Crevillén, A.; Morillas, S.; Sapena, A. On convergence in fuzzy metric spaces, Topology Appl., Volume 156 (2009), pp. 3002-3006 | DOI

[10] Gregori, V.; Morillas, S.; Sapena, A. On a class of completable fuzzy metric spaces, Fuzzy Sets and Systems, Volume 161 (2010), pp. 2193-2205 | Zbl | DOI

[11] Gregori, V.; Romaguera, S. On completion of fuzzy metric spaces, Theme: Fuzzy intervals, Fuzzy Sets and Systems, Volume 130 (2002), pp. 399-404 | DOI

[12] Hussain, N.; P. Salimi Implicit contractive mappings in modular metric and fuzzy metric spaces, Scientific World J., Volume 2014 (2014), pp. 1-12

[13] Khojasteh, F.; Shukla, S.; Radenović, S. A new approach to the study of fixed point theory for simulation functions, Filomat, Volume 29 (2015), pp. 1189-1194 | DOI | Zbl

[14] Mihet, D. On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets and Systems, Volume 158 (2007), pp. 915-921 | DOI

[15] Zadeh, L. A. Fuzzy Sets, Information and Control, Volume 8 (1965), pp. 338-353

Cité par Sources :