Dynamics of stochastic hybrid Gilpin-Ayala system with impulsive perturbations
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 2, p. 436-450.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper is mainly concerned with the dynamics of the stochastic Gilpin-Ayala model under regime switching with impulsive perturbations. The goal is to analyze the effects of Markov chain and impulse on the dynamics. Some asymptotic properties are considered and sufficient criteria for stochastic permanence, extinction, non-persistence in the mean and weak persistence are obtained. The critical value among the extinction, non-persistence in the mean and weak persistence is explored. Our results demonstrate that the dynamics of the model have close relations with the impulse and the stationary distribution of the Markov chain.
DOI : 10.22436/jnsa.010.02.10
Classification : 34F05, 34D05
Keywords: Gilpin-Ayala model, Markov chain, impulsive perturbations, stochastic permanence, extinction.

Wu, Ruihua 1

1 College of Science, China University of Petroleum (East China), Qingdao 266555, P. R. China
@article{JNSA_2017_10_2_a9,
     author = {Wu, Ruihua},
     title = {Dynamics of stochastic hybrid {Gilpin-Ayala} system with impulsive perturbations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {436-450},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2017},
     doi = {10.22436/jnsa.010.02.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.10/}
}
TY  - JOUR
AU  - Wu, Ruihua
TI  - Dynamics of stochastic hybrid Gilpin-Ayala system with impulsive perturbations
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 436
EP  - 450
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.10/
DO  - 10.22436/jnsa.010.02.10
LA  - en
ID  - JNSA_2017_10_2_a9
ER  - 
%0 Journal Article
%A Wu, Ruihua
%T Dynamics of stochastic hybrid Gilpin-Ayala system with impulsive perturbations
%J Journal of nonlinear sciences and its applications
%D 2017
%P 436-450
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.10/
%R 10.22436/jnsa.010.02.10
%G en
%F JNSA_2017_10_2_a9
Wu, Ruihua. Dynamics of stochastic hybrid Gilpin-Ayala system with impulsive perturbations. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 2, p. 436-450. doi : 10.22436/jnsa.010.02.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.10/

[1] Ahmad, S.; I. M. Stamova Asymptotic stability of competitive systems with delays and impulsive perturbations, J. Math. Anal. Appl., Volume 334 (2007), pp. 686-700 | Zbl | DOI

[2] Anderson, W. J. Continuous-time Markov chains, An applications-oriented approach, Springer Series in Statistics: Probability and its Applications, Springer-Verlag, New York, 1991 | Zbl

[3] Baınov, D.; Simeonov, P. Impulsive differential equations: periodic solutions and applications, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993

[4] F.-D. Chen Some new results on the permanence and extinction of nonautonomous Gilpin-Ayala type competition model with delays, Nonlinear Anal., Volume 7 (2006), pp. 1205-1222 | Zbl | DOI

[5] Du, N. H.; Kon, R.; Sato, K.; Takeuchi, Y. Dynamical behavior of Lotka-Volterra competition systems: non-autonomous bistable case and the effect of telegraph noise, J. Comput. Appl. Math., Volume 170 (2004), pp. 399-422 | DOI | Zbl

[6] Fan, M.; Wang, K. Global periodic solutions of a generalized n-species Gilpin-Ayala competition model, Comput. Math. Appl., Volume 40 (2000), pp. 1141-1151 | Zbl | DOI

[7] Gard, T. C. Persistence in stochastic food web models, Bull. Math. Biol., Volume 46 (1984), pp. 357-370 | Zbl | DOI

[8] Gard, T. C. Stability for multispecies population models in random environments, Nonlinear Anal., Volume 10 (1986), pp. 1411-1419 | DOI | Zbl

[9] He, M.-X.; Chen, F.-D. Dynamic behaviors of the impulsive periodic multi-species predator-prey system, Comput. Math. Appl., Volume 57 (2009), pp. 248-265 | DOI | Zbl

[10] Higham, D. J. An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., Volume 43 (2001), pp. 525-546 | DOI

[11] Hou, J.; Teng, Z.-D.; Gao, S.-J. Permanence and global stability for nonautonomous N-species Lotka-Valterra competitive system with impulses, Nonlinear Anal. Real World Appl., Volume 11 (2010), pp. 1882-1896 | DOI

[12] Jiang, D.-Q.; Shi, N.-Z. A note on nonautonomous logistic equation with random perturbation, J. Math. Anal. Appl., Volume 303 (2005), pp. 164-172 | Zbl | DOI

[13] Jiang, D.-Q.; Shi, N.-Z.; X.-Y. Li Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl., Volume 340 (2008), pp. 588-597 | Zbl | DOI

[14] Lakshmikantham, V.; Baınov, D. D.; Simeonov, P. S. Theory of impulsive differential equations, Series in Modern Applied Mathematics, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989

[15] Li, X.-Y.; Jiang, D.-Q.; Mao, X.-R. Population dynamical behavior of Lotka-Volterra system under regime switching, J. Comput. Appl. Math., Volume 232 (2009), pp. 427-448 | DOI | Zbl

[16] Li, C.-X.; Sun, J.-T. Stability analysis of nonlinear stochastic differential delay systems under impulsive control , Phys. Lett. A, Volume 374 (2010), pp. 1154-1158 | Zbl | DOI

[17] Li, C.-X.; Sun, J.-T.; Sun, R.-Y. Stability analysis of a class of stochastic differential delay equations with nonlinear impulsive effects, J. Franklin Inst., Volume 347 (2010), pp. 1186-1198 | Zbl | DOI

[18] Li, C.-X.; Shi, J.-P.; Sun, J.-T. Stability of impulsive stochastic differential delay systems and its application to impulsive stochastic neural networks, Nonlinear Anal., Volume 74 (2011), pp. 3099-3111 | DOI | Zbl

[19] Lian, B.-S.; Hu, S.-G. Asymptotic behaviour of the stochastic Gilpin-Ayala competition models, J. Math. Anal. Appl., Volume 339 (2008), pp. 419-428 | Zbl | DOI

[20] Liu, M.; Bai, C.-Z. Analysis of a stochastic tri-trophic food-chain model with harvesting, J. Math. Biol., Volume 73 (2016), pp. 597-625 | Zbl | DOI

[21] Liu, M.; Bai, C.-Z. Dynamics of a stochastic one-prey two-predator model with Lévy jumps, Appl. Math. Comput., Volume 284 (2016), pp. 308-321 | DOI

[22] Liu, M.; Wang, K. Asymptotic properties and simulations of a stochastic logistic model under regime switching, Math. Comput. Modelling, Volume 54 (2011), pp. 2139-2154 | DOI | Zbl

[23] Liu, M.; Wang, K. Asymptotic properties and simulations of a stochastic logistic model under regime switching II, Math. Comput. Modelling, Volume 55 (2012), pp. 405-418 | DOI | Zbl

[24] Liu, M.; Wang, K. Dynamics and simulations of a logistic model with impulsive perturbations in a random environment, Math. Comput. Simulation, Volume 92 (2013), pp. 53-75 | DOI

[25] Liu, M.; Wang, K. Asymptotic behavior of a stochastic nonautonomous Lotka-Volterra competitive system with impulsive perturbations, Math. Comput. Modelling, Volume 57 (2013), pp. 909-925 | Zbl | DOI

[26] Liu, M.; Wang, K. On a stochastic logistic equation with impulsive perturbations, Comput. Math. Appl., Volume 63 (2012), pp. 871-886 | Zbl | DOI

[27] Liu, M.; Wang, K. Dynamics of a two-prey one-predator system in random environments, J. Nonlinear Sci., Volume 23 (2013), pp. 751-775 | DOI | Zbl

[28] Liu, M.; Wang, K. Persistence and extinction in stochastic non-autonomous logistic systems, J. Math. Anal. Appl., Volume 375 (2011), pp. 443-457 | DOI | Zbl

[29] Luo, Q.; Mao, X.-R. Stochastic population dynamics under regime switching, J. Math. Anal. Appl., Volume 334 (2007), pp. 69-84 | DOI

[30] Mao, X.-R.; Yin, G. G.; Yuan, C.-G. Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica J. IFAC, Volume 43 (2007), pp. 264-273 | DOI | Zbl

[31] Mao, X.-R.; Yuan, C.-G. Stochastic differential equations with Markovian switching, Imperial College Press, London, 2006

[32] Sakthivel, R.; Luo, J. Asymptotic stability of nonlinear impulsive stochastic differential equations, Statist. Probab. Lett., Volume 79 (2009), pp. 1219-1223 | DOI

[33] Slatkin, M. The dynamics of a population in a Markovian environment, Ecol, Volume 59 (1978), pp. 249-256 | DOI

[34] Takeuchi, Y.; Du, N. H.; Hieu, N. T.; K. Sato Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment, J. Math. Anal. Appl., Volume 323 (2006), pp. 938-957 | Zbl | DOI

[35] Wu, R.-H.; Zou, X.-L.; Wang, K. Asymptotic properties of a stochastic Lotka-Volterra cooperative system with impulsive perturbations, Nonlinear Dynam., Volume 77 (2014), pp. 807-817 | Zbl | DOI

[36] Yan, J.-R. Stability for impulsive delay differential equations, Nonlinear Anal., Volume 63 (2005), pp. 66-80 | DOI

Cité par Sources :