A sharp generalization on cone b-metric space over Banach algebra
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 2, p. 429-435.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The aim of this paper is to generalize a famous result for Banach-type contractive mapping from $\rho(k)\in[0,\frac{1}{s})$ to $\rho(k)\in[0,1)$ in cone b-metric space over Banach algebra with coefficient $s\geq 1$, where $\rho(k)$ is the spectral radius of the generalized Lipschitz constant $k$. Moreover, some similar generalizations for the contractive constant $k$ from $k\in[0,\frac{1}{s})$ to $k \in [0, 1)$ in cone b-metric space and in b-metric space are also obtained. In addition, two examples are given to illustrate that our generalizations are in fact real generalizations.
DOI : 10.22436/jnsa.010.02.09
Classification : 47H10, 54H25
Keywords: Cone b-metric space over Banach algebra, fixed point, c-sequence, iterative sequence.

Huang, Huaping 1 ; Radenovic, Stojan 2 ; Deng, Guantie 1

1 School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing, 100875, China
2 Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120, Beograd, Serbia
@article{JNSA_2017_10_2_a8,
     author = {Huang, Huaping and Radenovic, Stojan and Deng, Guantie},
     title = {A sharp generalization on cone b-metric space over {Banach} algebra},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {429-435},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2017},
     doi = {10.22436/jnsa.010.02.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.09/}
}
TY  - JOUR
AU  - Huang, Huaping
AU  - Radenovic, Stojan
AU  - Deng, Guantie
TI  - A sharp generalization on cone b-metric space over Banach algebra
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 429
EP  - 435
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.09/
DO  - 10.22436/jnsa.010.02.09
LA  - en
ID  - JNSA_2017_10_2_a8
ER  - 
%0 Journal Article
%A Huang, Huaping
%A Radenovic, Stojan
%A Deng, Guantie
%T A sharp generalization on cone b-metric space over Banach algebra
%J Journal of nonlinear sciences and its applications
%D 2017
%P 429-435
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.09/
%R 10.22436/jnsa.010.02.09
%G en
%F JNSA_2017_10_2_a8
Huang, Huaping; Radenovic, Stojan; Deng, Guantie. A sharp generalization on cone b-metric space over Banach algebra. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 2, p. 429-435. doi : 10.22436/jnsa.010.02.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.09/

[1] I. A. Bakhtin The contraction mapping principle in almost metric space, (Russian) Functional analysis, Ulyanovsk. Gos. Ped. Inst., Ulyanovsk (1989), pp. 26-37

[2] Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., Volume 3 (1922)

[3] Boriceanu, M.; Bota, M.; Petruşel, A. Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., Volume 8 (2010), pp. 367-377 | DOI | Zbl

[4] Czerwik, S. Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11

[5] Gajić, L.; Rakočević, V. Quasi-contractions on a nonnormal cone metric space , Funct. Anal. Appl., Volume 46 (2012), pp. 62-65 | Zbl | DOI

[6] Huang, H.-P.; Radenović, S. Common fixed point theorems of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras and applications, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 787-799 | Zbl

[7] Huang, H.-P.; Radenović, S. Some fixed point results of generalized Lipschitz mappings on cone b-metric spaces over Banach algebras, J. Comput. Anal. Appl., Volume 20 (2016), pp. 566-583 | Zbl

[8] Huang, H.-P.; Xu, S.-Y. Correction: Fixed point theorems of contractive mappings in cone b-metric spaces and applications, Fixed Point Theory Appl., Volume 2014 (2014 ), pp. 1-5 | DOI

[9] Janković, S.; Kadelburg, Z.; Radenović, S. On cone metric spaces: a survey, Nonlinear Anal., Volume 74 (2011), pp. 2591-2601 | Zbl | DOI

[10] Jovanović, M.; Kadelburg, Z.; Radenović, S. Common fixed point results in metric-type spaces, Fixed Point Theory Appl., Volume 2010 (2015), pp. 1-15 | DOI

[11] Kadelburg, Z.; Radenović, S.; Rakočević, V. Remarks on ''Quasi-contraction on a cone metric space'', Appl. Math. Lett., Volume 22 (2009), pp. 1674-1679 | DOI | Zbl

[12] Mishra, P. K.; Sachdeva, S.; Banerjee, S. K. Some fixed point theorems in b-metric space, Turkish J. Anal. Number Theory, Volume 2 (2014), pp. 19-22

[13] Sintunavarat, W. Fixed point results in b-metric spaces approach to the existence of a solution for nonlinear integral equations, ev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM, Volume 110 (2016), pp. 585-600 | DOI | Zbl

[14] W. Sintunavarat Nonlinear integral equations with new admissibility types in b-metric spaces, J. Fixed Point Theory Appl., Volume 18 (2016), pp. 397-416 | Zbl | DOI

[15] Yamaod, O.; Sintunavarat, W.; Cho, Y. J. Common fixed point theorems for generalized cyclic contraction pairs in b-metric spaces with applications, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-18 | DOI | Zbl

[16] Yamaod, O.; Sintunavarat, W.; Cho, Y. J. Existence of a common solution for a system of nonlinear integral equations via fixed point methods in b-metric spaces, Open Math., Volume 14 (2016), pp. 128-145 | DOI | Zbl

Cité par Sources :