Voir la notice de l'article provenant de la source International Scientific Research Publications
Huang, Huaping 1 ; Radenovic, Stojan 2 ; Deng, Guantie 1
@article{JNSA_2017_10_2_a8, author = {Huang, Huaping and Radenovic, Stojan and Deng, Guantie}, title = {A sharp generalization on cone b-metric space over {Banach} algebra}, journal = {Journal of nonlinear sciences and its applications}, pages = {429-435}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2017}, doi = {10.22436/jnsa.010.02.09}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.09/} }
TY - JOUR AU - Huang, Huaping AU - Radenovic, Stojan AU - Deng, Guantie TI - A sharp generalization on cone b-metric space over Banach algebra JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 429 EP - 435 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.09/ DO - 10.22436/jnsa.010.02.09 LA - en ID - JNSA_2017_10_2_a8 ER -
%0 Journal Article %A Huang, Huaping %A Radenovic, Stojan %A Deng, Guantie %T A sharp generalization on cone b-metric space over Banach algebra %J Journal of nonlinear sciences and its applications %D 2017 %P 429-435 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.09/ %R 10.22436/jnsa.010.02.09 %G en %F JNSA_2017_10_2_a8
Huang, Huaping; Radenovic, Stojan; Deng, Guantie. A sharp generalization on cone b-metric space over Banach algebra. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 2, p. 429-435. doi : 10.22436/jnsa.010.02.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.09/
[1] The contraction mapping principle in almost metric space, (Russian) Functional analysis, Ulyanovsk. Gos. Ped. Inst., Ulyanovsk (1989), pp. 26-37
[2] Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., Volume 3 (1922)
[3] Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., Volume 8 (2010), pp. 367-377 | DOI | Zbl
[4] Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11
[5] Quasi-contractions on a nonnormal cone metric space , Funct. Anal. Appl., Volume 46 (2012), pp. 62-65 | Zbl | DOI
[6] Common fixed point theorems of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras and applications, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 787-799 | Zbl
[7] Some fixed point results of generalized Lipschitz mappings on cone b-metric spaces over Banach algebras, J. Comput. Anal. Appl., Volume 20 (2016), pp. 566-583 | Zbl
[8] Correction: Fixed point theorems of contractive mappings in cone b-metric spaces and applications, Fixed Point Theory Appl., Volume 2014 (2014 ), pp. 1-5 | DOI
[9] On cone metric spaces: a survey, Nonlinear Anal., Volume 74 (2011), pp. 2591-2601 | Zbl | DOI
[10] Common fixed point results in metric-type spaces, Fixed Point Theory Appl., Volume 2010 (2015), pp. 1-15 | DOI
[11] Remarks on ''Quasi-contraction on a cone metric space'', Appl. Math. Lett., Volume 22 (2009), pp. 1674-1679 | DOI | Zbl
[12] Some fixed point theorems in b-metric space, Turkish J. Anal. Number Theory, Volume 2 (2014), pp. 19-22
[13] Fixed point results in b-metric spaces approach to the existence of a solution for nonlinear integral equations, ev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM, Volume 110 (2016), pp. 585-600 | DOI | Zbl
[14] Nonlinear integral equations with new admissibility types in b-metric spaces, J. Fixed Point Theory Appl., Volume 18 (2016), pp. 397-416 | Zbl | DOI
[15] Common fixed point theorems for generalized cyclic contraction pairs in b-metric spaces with applications, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-18 | DOI | Zbl
[16] Existence of a common solution for a system of nonlinear integral equations via fixed point methods in b-metric spaces, Open Math., Volume 14 (2016), pp. 128-145 | DOI | Zbl
Cité par Sources :