Voir la notice de l'article provenant de la source International Scientific Research Publications
Ji, Cuiru 1 ; Zhu, Chuanxi 1 ; Wu, Zhaoqi 1
@article{JNSA_2017_10_2_a7, author = {Ji, Cuiru and Zhu, Chuanxi and Wu, Zhaoqi}, title = {New multipled common fixed point theorems in {Menger} {PMT-spaces}}, journal = {Journal of nonlinear sciences and its applications}, pages = {419-428}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2017}, doi = {10.22436/jnsa.010.02.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.08/} }
TY - JOUR AU - Ji, Cuiru AU - Zhu, Chuanxi AU - Wu, Zhaoqi TI - New multipled common fixed point theorems in Menger PMT-spaces JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 419 EP - 428 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.08/ DO - 10.22436/jnsa.010.02.08 LA - en ID - JNSA_2017_10_2_a7 ER -
%0 Journal Article %A Ji, Cuiru %A Zhu, Chuanxi %A Wu, Zhaoqi %T New multipled common fixed point theorems in Menger PMT-spaces %J Journal of nonlinear sciences and its applications %D 2017 %P 419-428 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.08/ %R 10.22436/jnsa.010.02.08 %G en %F JNSA_2017_10_2_a7
Ji, Cuiru; Zhu, Chuanxi; Wu, Zhaoqi. New multipled common fixed point theorems in Menger PMT-spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 2, p. 419-428. doi : 10.22436/jnsa.010.02.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.08/
[1] Distance type and common fixed point theorems in Menger probabilistic metric type spaces, Appl. Math. Comput., Volume 265 (2015), pp. 1145-1154 | DOI
[2] Sur les opérations dans les ensembles abstraits et leur application aux équations Intégrales, Fund. Math., Volume 3 (1922), pp. 133-181
[3] Nonlinear operator theory in probabilistic metric spaces, Nova Science Publishers, Inc., Huntington, NY, 2001
[4] On nonsymmetric topological and probabilistic structures, Nova Science Publishers, Inc., New York, 2006 | Zbl
[5] A new contraction principle in Menger spaces, Acta Math. Sin. (Engl. Ser.), Volume 24 (2008), pp. 1379-1386 | Zbl | DOI
[6] A coincidence point result in Menger spaces using a control function , Chaos Solitons Fractals, Volume 42 (2009), pp. 3058-3063 | DOI | Zbl
[7] Some fixed point results in Menger spaces using a control function, Surv. Math. Appl., Volume 4 (2009), pp. 41-52 | Zbl
[8] Fixed point theory in probabilistic metric spaces, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 2001
[9] Fixed points theorems by altering distances between the points, Bull. Austral. Math. Soc., Volume 30 (1984), pp. 1-9 | DOI
[10] Further generalization of fixed point theorems in Menger PM-spaces, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-10 | DOI | Zbl
[11] Tripled common fixed point theorems under probabilistic \(\phi\)-contractive conditions in generalized Menger probabilistic metric spaces, Fixed Point Theory Appl., Volume 2014 (2014 ), pp. 1-17 | DOI
[12] Statistical metrics, Proc. Nat. Acad. Sci. U. S. A., Volume 28 (1942), pp. 535-537
[13] Altering distances in probabilistic Menger spaces , Nonlinear Anal., Volume 71 (2009), pp. 2734-2738 | DOI
[14] Some fixed point theorems in Menger probabilistic metric-like spaces, Fixed Point Theory Appl., Volume 2015 (2015 ), pp. 1-16 | DOI | Zbl
[15] Probabilistic metric spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing Co., New York, 1983
[16] Fixed points of contraction mappings on probabilistic metric spaces, Math. Systems Theory, Volume 6 (1972), pp. 72-102 | DOI
[17] Several nonlinear operator problems in the Menger PN space, Nonlinear Anal., Volume 65 (2006), pp. 1281-1284 | DOI | Zbl
[18] Research on some problems for nonlinear operators , Nonlinear Anal., Volume 71 (2009), pp. 4568-4571 | DOI
[19] Multidimensional common fixed point theorems under probabilistic \(\phi\)-contractive conditions in multidimensional Menger probabilistic metric spaces, Fixed Point Thenry Appl., Volume 2015 (2015 ), pp. 1-15 | Zbl | DOI
Cité par Sources :