Voir la notice de l'article provenant de la source International Scientific Research Publications
Wang, Da-Bin 1 ; Guo, Man 1
@article{JNSA_2017_10_2_a6, author = {Wang, Da-Bin and Guo, Man}, title = {Multiple periodic solutions for second-order discrete {Hamiltonian} systems}, journal = {Journal of nonlinear sciences and its applications}, pages = {410-418}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2017}, doi = {10.22436/jnsa.010.02.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.07/} }
TY - JOUR AU - Wang, Da-Bin AU - Guo, Man TI - Multiple periodic solutions for second-order discrete Hamiltonian systems JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 410 EP - 418 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.07/ DO - 10.22436/jnsa.010.02.07 LA - en ID - JNSA_2017_10_2_a6 ER -
%0 Journal Article %A Wang, Da-Bin %A Guo, Man %T Multiple periodic solutions for second-order discrete Hamiltonian systems %J Journal of nonlinear sciences and its applications %D 2017 %P 410-418 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.07/ %R 10.22436/jnsa.010.02.07 %G en %F JNSA_2017_10_2_a6
Wang, Da-Bin; Guo, Man. Multiple periodic solutions for second-order discrete Hamiltonian systems. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 2, p. 410-418. doi : 10.22436/jnsa.010.02.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.07/
[1] Discrete variational principles for higher-order Lagrangians, Nuovo Cimento Soc. Ital. Fis. B, Volume 120 (2005), pp. 931-938
[2] Subharmonics with minimal periods for convex discrete Hamiltonian systems, Abstr. Appl. Anal., Volume 2013 (2013 ), pp. 1-9 | Zbl
[3] Infinitely many periodic solutions for discrete second order Hamiltonian systems with oscillating potential, Adv. Difference Equ., Volume 2012 (2012 ), pp. 1-9 | DOI | Zbl
[4] Existence of periodic solutions for a class of second-order discrete Hamiltonian systems, J. Difference Equ. Appl., Volume 21 (2015), pp. 197-208 | Zbl | DOI
[5] Existence of periodic solutions for a class of second order discrete Hamiltonian systems, Adv. Difference Equ., Volume 2016 (2016 ), pp. 1-17 | DOI
[6] The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. London Math. Soc., Volume 68 (2003), pp. 419-430 | Zbl | DOI
[7] Discrete variational principles for Lagrangians linear in velocities, Rep. Math. Phys., Volume 59 (2007), pp. 33-43 | DOI
[8] A generalized saddle point theorem, J. Differential Equations, Volume 82 (1989), pp. 372-385 | DOI
[9] Applications of Clark duality to periodic solutions with minimal period for discrete Hamiltonian systems, [Applications of Clarke duality to periodic solutions with minimal period for discrete Hamiltonian systems], J. Math. Anal. Appl., Volume 342 (2008), pp. 726-741 | DOI
[10] Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, Springer- Verlag, New York, 1989
[11] Periodic solutions for second-order discrete Hamiltonian systems, J. Difference Equ. Appl., Volume 17 (2011), pp. 1413-1430 | DOI
[12] Chaos synchronization of the discrete frational logistic map, Signal Process., Volume 102 (2014), pp. 96-99 | DOI
[13] Lattice fractional diffusion equation in terms of a Riesz-Caputo difference, Phys. A, Volume 438 (2015), pp. 335-339 | DOI
[14] Existence of a periodic solution for subquadratic second-order discrete Hamiltonian system, Nonlinear Anal., Volume 67 (2007), pp. 2072-2080 | DOI | Zbl
[15] Multiple periodic solutions for superquadratic second-order discrete Hamiltonian systems, Appl. Math. Comput., Volume 196 (2008), pp. 494-500 | Zbl | DOI
[16] Multiple periodic solutions for second-order discrete Hamiltonian systems, Appl. Math. Comput., Volume 234 (2014), pp. 142-149 | DOI
[17] Periodic solutions for second-order discrete Hamiltonian system with a change of sign in potential, Appl. Math. Comput., Volume 219 (2013), pp. 6548-6555 | Zbl | DOI
[18] Homoclinic orbits for a class of discrete periodic Hamiltonian systems, Proc. Amer. Math. Soc., Volume 143 (2015), pp. 3155-3163 | DOI
Cité par Sources :