Multiple periodic solutions for second-order discrete Hamiltonian systems
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 2, p. 410-418.

Voir la notice de l'article provenant de la source International Scientific Research Publications

By applying critical point theory, the multiplicity of periodic solutions to second-order discrete Hamiltonian systems with partially periodic potentials was considered. It is noticed that, in this paper, the nonlinear term is growing linearly and main results extend some present results.
DOI : 10.22436/jnsa.010.02.07
Classification : 34C25, 58E50
Keywords: Discrete Hamiltonian systems, periodic solutions, the generalized saddle point theorem.

Wang, Da-Bin 1 ; Guo, Man 1

1 Department of Applied Mathematics, Lanzhou University of Technology, 730050 Lanzhou, People’s Republic of China
@article{JNSA_2017_10_2_a6,
     author = {Wang, Da-Bin and Guo, Man},
     title = {Multiple periodic solutions for second-order discrete {Hamiltonian} systems},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {410-418},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2017},
     doi = {10.22436/jnsa.010.02.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.07/}
}
TY  - JOUR
AU  - Wang, Da-Bin
AU  - Guo, Man
TI  - Multiple periodic solutions for second-order discrete Hamiltonian systems
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 410
EP  - 418
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.07/
DO  - 10.22436/jnsa.010.02.07
LA  - en
ID  - JNSA_2017_10_2_a6
ER  - 
%0 Journal Article
%A Wang, Da-Bin
%A Guo, Man
%T Multiple periodic solutions for second-order discrete Hamiltonian systems
%J Journal of nonlinear sciences and its applications
%D 2017
%P 410-418
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.07/
%R 10.22436/jnsa.010.02.07
%G en
%F JNSA_2017_10_2_a6
Wang, Da-Bin; Guo, Man. Multiple periodic solutions for second-order discrete Hamiltonian systems. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 2, p. 410-418. doi : 10.22436/jnsa.010.02.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.07/

[1] Baleanu, D.; Jarad, F. Discrete variational principles for higher-order Lagrangians, Nuovo Cimento Soc. Ital. Fis. B, Volume 120 (2005), pp. 931-938

[2] Bin, H.-H. Subharmonics with minimal periods for convex discrete Hamiltonian systems, Abstr. Appl. Anal., Volume 2013 (2013 ), pp. 1-9 | Zbl

[3] Che, C.-F.; Xue, X.-P. Infinitely many periodic solutions for discrete second order Hamiltonian systems with oscillating potential, Adv. Difference Equ., Volume 2012 (2012 ), pp. 1-9 | DOI | Zbl

[4] Gu, H.; An, T.-Q. Existence of periodic solutions for a class of second-order discrete Hamiltonian systems, J. Difference Equ. Appl., Volume 21 (2015), pp. 197-208 | Zbl | DOI

[5] Guan, W.; Yang, K. Existence of periodic solutions for a class of second order discrete Hamiltonian systems, Adv. Difference Equ., Volume 2016 (2016 ), pp. 1-17 | DOI

[6] Guo, Z.-M.; Yu, J.-S. The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. London Math. Soc., Volume 68 (2003), pp. 419-430 | Zbl | DOI

[7] Jarad, F.; Baleanu, D. Discrete variational principles for Lagrangians linear in velocities, Rep. Math. Phys., Volume 59 (2007), pp. 33-43 | DOI

[8] J. Q. Liu A generalized saddle point theorem, J. Differential Equations, Volume 82 (1989), pp. 372-385 | DOI

[9] Long, Y.-H. Applications of Clark duality to periodic solutions with minimal period for discrete Hamiltonian systems, [Applications of Clarke duality to periodic solutions with minimal period for discrete Hamiltonian systems], J. Math. Anal. Appl., Volume 342 (2008), pp. 726-741 | DOI

[10] Mawhin, J.; Willem, M. Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, Springer- Verlag, New York, 1989

[11] Tang, X.-H.; Zhang, X.-Y. Periodic solutions for second-order discrete Hamiltonian systems, J. Difference Equ. Appl., Volume 17 (2011), pp. 1413-1430 | DOI

[12] Wu, G.-C.; Baleanu, D. Chaos synchronization of the discrete frational logistic map, Signal Process., Volume 102 (2014), pp. 96-99 | DOI

[13] Wu, G.-C.; Baleanu, D.; Zeng, Z.-G.; S.-D. Zeng Lattice fractional diffusion equation in terms of a Riesz-Caputo difference, Phys. A, Volume 438 (2015), pp. 335-339 | DOI

[14] Xue, Y.-F.; Tang, C.-L. Existence of a periodic solution for subquadratic second-order discrete Hamiltonian system, Nonlinear Anal., Volume 67 (2007), pp. 2072-2080 | DOI | Zbl

[15] Xue, Y.-F.; Tang, C.-L. Multiple periodic solutions for superquadratic second-order discrete Hamiltonian systems, Appl. Math. Comput., Volume 196 (2008), pp. 494-500 | Zbl | DOI

[16] Yan, S.-H.; Wu, X.-P.; Tang, C.-L. Multiple periodic solutions for second-order discrete Hamiltonian systems, Appl. Math. Comput., Volume 234 (2014), pp. 142-149 | DOI

[17] Ye, Y.-W.; Tang, C.-L. Periodic solutions for second-order discrete Hamiltonian system with a change of sign in potential, Appl. Math. Comput., Volume 219 (2013), pp. 6548-6555 | Zbl | DOI

[18] Zhang, Q.-Q. Homoclinic orbits for a class of discrete periodic Hamiltonian systems, Proc. Amer. Math. Soc., Volume 143 (2015), pp. 3155-3163 | DOI

Cité par Sources :