Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Banach spaces
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 2, p. 395-409.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we combine the subgradient extragradient method with the Halpern method for finding a solution of a variational inequality involving a monotone Lipschitz mapping in Banach spaces. By using the generalized projection operator and the Lyapunov functional introduced by Alber, we prove a strong convergence theorem. We also consider the problem of finding a common element of the set of solutions of a variational inequality problem and the set of fixed points of a relatively nonexpansive mapping. Our results improve some well-known results in Banach spaces or Hilbert spaces.
DOI : 10.22436/jnsa.010.02.06
Classification : 47H09, 47H05, 47H06, 47J25, 47J05
Keywords: Subgradient extragradient method, Halpern method, generalized projection operator, monotone mapping, variational inequality, relatively nonexpansive mapping.

Liu, Ying 1

1 College of Mathematics and Information Science, Hebei University, Baoding, Hebei, 071002, China
@article{JNSA_2017_10_2_a5,
     author = {Liu, Ying},
     title = {Strong convergence of the {Halpern} subgradient extragradient method for solving variational inequalities in {Banach} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {395-409},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2017},
     doi = {10.22436/jnsa.010.02.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.06/}
}
TY  - JOUR
AU  - Liu, Ying
TI  - Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Banach spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 395
EP  - 409
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.06/
DO  - 10.22436/jnsa.010.02.06
LA  - en
ID  - JNSA_2017_10_2_a5
ER  - 
%0 Journal Article
%A Liu, Ying
%T Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Banach spaces
%J Journal of nonlinear sciences and its applications
%D 2017
%P 395-409
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.06/
%R 10.22436/jnsa.010.02.06
%G en
%F JNSA_2017_10_2_a5
Liu, Ying. Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Banach spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 2, p. 395-409. doi : 10.22436/jnsa.010.02.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.06/

[1] Alber, Y.; Guerre-Delabriere, S. On the projection methods for fixed point problems, Analysis (Munich), Volume 21 (2001), pp. 17-39 | DOI

[2] Al’ber, Ya. I.; Reich, S. An iterative method for solving a class of nonlinear operator equations in Banach spaces, Panamer. Math. J., Volume 4 (1994), pp. 39-54

[3] Ball, K.; Carlen, E. A.; Lieb, E. H. Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math., Volume 115 (1994), pp. 463-482 | Zbl | DOI

[4] Buong, N. Strong convergence theorem of an iterative method for variational inequalities and fixed point problems in Hilbert spaces, Appl. Math. Comput., Volume 217 (2010), pp. 322-329 | DOI

[5] Ceng, L.-C.; Hadjisavvas, N.; Wong, N.-C. Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems, J. Global Optim., Volume 46 (2010), pp. 635-646 | DOI | Zbl

[6] Censor, Y.; Gibali, A.; Reich, S. Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Methods Softw., Volume 26 (2011), pp. 827-845 | DOI | Zbl

[7] Censor, Y.; Gibali, A.; Reich, S. The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., Volume 148 (2011), pp. 318-335 | DOI

[8] Chen, J.-M.; Zhang, L.-J.; Fan, T.-G. Viscosity approximation methods for nonexpansive mappings and monotone mappings, J. Math. Anal. Appl., Volume 334 (2007), pp. 1450-1461 | DOI

[9] Halpern, B. Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 957-961 | DOI

[10] Iiduka, H.; Takahashi, W. Strong convergence theorems for nonexpansive nonself-mappings and inverse-strongly-monotone mappings, J. Convex Anal., Volume 11 (2004), pp. 69-79

[11] Iiduka, H.; Takahashi, W. Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal., Volume 61 (2005), pp. 341-350 | DOI

[12] Iiduka, H.; Takahashi, W. Weak convergence of a projection algorithm for variational inequalities in a Banach space, J. Math. Anal. Appl., Volume 339 (2008), pp. 668-679 | DOI

[13] Korpelevič, G. M. An extragradient method for finding saddle points and for other problems, (Russian) Èkonom. i Mat. Metody, Volume 12 (1976), pp. 747-756 | Zbl

[14] Kraikaew, R.; Saejung, S. Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces, J. Optim. Theory Appl., Volume 163 (2014), pp. 399-412 | Zbl | DOI

[15] Lions, J.-L.; Stampacchia, G. Variational inequalities, Comm. Pure Appl. Math., Volume 20 (1967), pp. 493-517 | DOI

[16] Liu, Y. Strong convergence theorem for relatively nonexpansive mapping and inverse-strongly-monotone mapping in a Banach space, Appl. Math. Mech. (English Ed.), Volume 30 (2009), pp. 925-932 | DOI

[17] Maingé, P.-E. Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., Volume 16 (2008), pp. 899-912 | DOI | Zbl

[18] Matsushita, S.-Y.; Takahashi, W. A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory, Volume 134 (2005), pp. 257-266 | DOI

[19] Nadezhkina, N.; Takahashi, W. Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitzcontinuous monotone mappings, SIAM J. Optim., Volume 16 (2006), pp. 1230-1241 | DOI

[20] Nakajo, K. Strong convergence for gradient projection method and relatively nonexpansive mappings in Banach spaces, Appl. Math. Comput., Volume 271 (2015), pp. 251-258 | DOI

[21] Takahashi, W.; Toyoda, M. Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., Volume 118 (2003), pp. 417-428 | DOI

[22] Xu, H.-K. Inequalities in Banach spaces with applications, Nonlinear Anal., Volume 16 (1991), pp. 1127-1138 | DOI

[23] H.-K. Xu Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc., Volume 65 (2002), pp. 109-113 | Zbl | DOI

Cité par Sources :