Viscosity approximation methods for the implicit midpoint rule of nonexpansive mappings in CAT(0) Spaces
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 2, p. 386-394.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The purpose of this paper is to introduce the implicit midpoint rule of nonexpansive mappings in CAT(0) spaces. The strong convergence of this method is proved under certain assumptions imposed on the sequence of parameters. Moreover, it is shown that the limit of the sequence generated by the implicit midpoint rule solves an additional variational inequality. Applications to nonlinear Volterra integral equations and nonlinear variational inclusion problem are included. The results presented in the paper extend and improve some recent results announced in the current literature.
DOI : 10.22436/jnsa.010.02.05
Classification : 47H09, 47J25
Keywords: Viscosity, implicit midpoint rule, nonexpansive mapping, projection, variational inequality, CAT(0) space.

Zhao, Liang-cai 1 ; Chang, Shih-sen 2 ; Wang, Lin 3 ; Wang, Gang 3

1 College of Mathematics, Yibin University, Yibin, Sichuan, 644007, China
2 Center for General Education, China Medical University, Taichung, 40402, Taiwan
3 College of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, China
@article{JNSA_2017_10_2_a4,
     author = {Zhao, Liang-cai and Chang, Shih-sen and Wang, Lin and Wang, Gang},
     title = {Viscosity approximation methods for the implicit midpoint rule of nonexpansive mappings in {CAT(0)} {Spaces}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {386-394},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2017},
     doi = {10.22436/jnsa.010.02.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.05/}
}
TY  - JOUR
AU  - Zhao, Liang-cai
AU  - Chang, Shih-sen
AU  - Wang, Lin
AU  - Wang, Gang
TI  - Viscosity approximation methods for the implicit midpoint rule of nonexpansive mappings in CAT(0) Spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 386
EP  - 394
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.05/
DO  - 10.22436/jnsa.010.02.05
LA  - en
ID  - JNSA_2017_10_2_a4
ER  - 
%0 Journal Article
%A Zhao, Liang-cai
%A Chang, Shih-sen
%A Wang, Lin
%A Wang, Gang
%T Viscosity approximation methods for the implicit midpoint rule of nonexpansive mappings in CAT(0) Spaces
%J Journal of nonlinear sciences and its applications
%D 2017
%P 386-394
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.05/
%R 10.22436/jnsa.010.02.05
%G en
%F JNSA_2017_10_2_a4
Zhao, Liang-cai; Chang, Shih-sen; Wang, Lin; Wang, Gang. Viscosity approximation methods for the implicit midpoint rule of nonexpansive mappings in CAT(0) Spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 2, p. 386-394. doi : 10.22436/jnsa.010.02.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.05/

[1] Kakavandi, B. Ahmadi Weak topologies in complete CAT(0) metric spaces, Proc. Amer. Math. Soc., Volume 141 (2013), pp. 1029-1039 | DOI | Zbl

[2] Alghamdi, M. A.; Alghamdi, M. A.; Shahzad, N.; Xu, H.-K. The implicit midpoint rule for nonexpansive mappings, Fixed Point Theory Appl., Volume 2014 (2014 ), pp. 1-9 | DOI

[3] Attouch, H. Viscosity solutions of minimization problems, SIAM J. Optim., Volume 6 (1996), pp. 769-806 | DOI

[4] Auzinger, W.; Frank, R. Asymptotic error expansions for stiff equations: an analysis for the implicit midpoint and trapezoidal rules in the strongly stiff case, Numer. Math., Volume 56 (1989), pp. 469-499 | Zbl | DOI

[5] Bader, G.; P. Deuflhard A semi-implicit mid-point rule for stiff systems of ordinary differential equations, Numer. Math., Volume 41 (1983), pp. 373-398 | DOI | Zbl

[6] Banach, S. Metric spaces of nonpositive curvature, Springer, New York, 1999

[7] Berg, I. D.; Nikolaev, I. G. Quasilinearization and curvature of Aleksandrov spaces, Geom. Dedicata, Volume 133 (2008), pp. 195-218 | DOI | Zbl

[8] Bridson, M. R.; Haefliger, A. Metric spaces of non-positive curvature , Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1999 | DOI

[9] Brown, K. S. Buildings, Springer-Verlag, New York, 1989

[10] Cho, S. Y.; Li, W.-L.; Kang, S. M. Convergence analysis of an iterative algorithm for monotone operators, J. Inequal. Appl., Volume 2013 (2013 ), pp. 1-14 | DOI

[11] Dehghan, H.; Rooin, J. A characterization of metric projection in CAT(0) spaces, In: International Conference on Functional Equation, Geometric Functions and Applications (ICFGA 2012), 10-12th May 2012, pp. 41-43. Payame Noor University, Tabriz, 2012

[12] Dhompongsa, S.; Kirk, W. A.; Panyanak, B. Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal., Volume 8 (2007), pp. 35-45

[13] Dhompongsa, S.; Panyanak, B. On \(\Delta\)-convergence theorems in CAT(0) spaces, Comput. Math. Appl., Volume 56 (2008), pp. 2572-2579

[14] Kirk, W. A.; Panyanak, B. A concept of convergence in geodesic spaces, Nonlinear Anal., Volume 68 (2008), pp. 3689-3696 | DOI

[15] Moudafi, A. Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., Volume 241 (2000), pp. 46-55 | DOI

[16] Saejung, S. Halpern’s iteration in CAT(0) spaces, Fixed Point Theory Appl., Volume 2010 (2010 ), pp. 1-13

[17] Schneider, C. Analysis of the linearly implicit mid-point rule for differential-algebraic equations, Electron. Trans. Numer. Anal., Volume 1 (1993), pp. 1-10 | Zbl

[18] Somali, S. Implicit midpoint rule to the nonlinear degenerate boundary value problems, Int. J. Comput. Math., Volume 79 (2002), pp. 327-332 | Zbl | DOI

[19] R.Wangkeeree; Preechasilp, P. Viscosity approximation methods for nonexpansive mappings in CAT(0) spaces, J. Inequal. Appl., Volume 2013 (2013 ), pp. 1-15 | DOI

[20] Xu, H.-K. Iterative algorithms for nonlinear operators, J. London Math. Soc., Volume 66 (2002), pp. 240-256 | DOI

[21] Xu, H.-K. Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., Volume 298 (2004), pp. 279-291 | DOI

[22] Xu, H.-K.; Alghamdi, M. A.; Shahzad, N. The viscosity technique for the implicit midpoint rule of nonexpansive mappings in Hilbert spaces, Fixed Point Theory Appl., Volume 2015 (2015 ), pp. 1-12 | Zbl | DOI

[23] Yao, Y.-H.; Shahzad, N.; Liou, N.-C. Modified semi-implicit midpoint rule for nonexpansive mappings, Fixed Point Theory Appl., Volume 2015 (2015 ), pp. 1-15 | Zbl | DOI

[24] Zhang, S.-S. Integral equations, Chongqing press, Chongqing, 1984

[25] Zhao, L.-C.; Chang, S.-S.; Wen, C.-F. Viscosity approximation methods for the implicit midpoint rule of asymptotically nonexpansive mappings in Hilbert spaces, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 4478-4488 | Zbl

Cité par Sources :