Voir la notice de l'article provenant de la source International Scientific Research Publications
Wangkeeree, Rabian 1 ; Bantaojai, Thanatporn 2
@article{JNSA_2017_10_2_a1, author = {Wangkeeree, Rabian and Bantaojai, Thanatporn}, title = {Levitin-Polyak well-posedness for lexicographic vector equilibrium problems}, journal = {Journal of nonlinear sciences and its applications}, pages = {354-367}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2017}, doi = {10.22436/jnsa.010.02.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.02/} }
TY - JOUR AU - Wangkeeree, Rabian AU - Bantaojai, Thanatporn TI - Levitin-Polyak well-posedness for lexicographic vector equilibrium problems JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 354 EP - 367 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.02/ DO - 10.22436/jnsa.010.02.02 LA - en ID - JNSA_2017_10_2_a1 ER -
%0 Journal Article %A Wangkeeree, Rabian %A Bantaojai, Thanatporn %T Levitin-Polyak well-posedness for lexicographic vector equilibrium problems %J Journal of nonlinear sciences and its applications %D 2017 %P 354-367 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.02/ %R 10.22436/jnsa.010.02.02 %G en %F JNSA_2017_10_2_a1
Wangkeeree, Rabian; Bantaojai, Thanatporn. Levitin-Polyak well-posedness for lexicographic vector equilibrium problems. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 2, p. 354-367. doi : 10.22436/jnsa.010.02.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.02/
[1] Well-posedness for lexicographic vector equilibrium problems, Constructive nonsmooth analysis and related topics, Springer Optim. Appl., Springer, New York, Volume 87 (2014), pp. 159-174 | Zbl | DOI
[2] Well-posedness under relaxed semicontinuity for bilevel equilibrium and optimization problems with equilibrium constraints, J. Optim. Theory Appl., Volume 153 (2012), pp. 42-59 | DOI | Zbl
[3] Well-posedness for vector quasiequilibria, Taiwanese J. Math., Volume 13 (2009), pp. 713-737 | Zbl | DOI
[4] Set-valued analysis, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1990
[5] Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1980
[6] Lexicographic variational inequalities with applications, Optimization, Volume 56 (2007), pp. 355-367 | DOI
[7] Lexicographic and sequential equilibrium problems, J. Global Optim., Volume 46 (2010), pp. 551-560 | DOI | Zbl
[8] From optimization and variational inequalities to equilibrium problems, Math. Student, Volume 63 (1994), pp. 123-145
[9] Generalized extensive measurement for lexicographic orders, J. Math. Psych., Volume 54 (2010), pp. 345-351 | DOI | Zbl
[10] Well-posedness for mixed quasivariational-like inequalities, J. Optim. Theory Appl., Volume 139 (2008), pp. 109-225 | DOI | Zbl
[11] Levitin-Polyak well-posedness by perturbations for systems of set-valued vector quasiequilibrium problems, Math. Methods Oper. Res., Volume 77 (2013), pp. 33-64 | DOI
[12] Well posedness in vector optimization problems and vector variational inequalities, J. Optim. Theory Appl., Volume 132 (2007), pp. 213-226 | DOI
[13] On the Istrăţescu’s measure of noncompactness, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.), Volume 16 (1972), pp. 403-406 | Zbl
[14] Existence of solutions to some equilibrium problems, J. Optim. Theory Appl., Volume 126 (2005), pp. 97-107 | DOI
[15] On stability of some lexicographic integer optimization problem, Control Cybernet., Volume 39 (2010), pp. 811-826 | Zbl
[16] Well-posedness for equilibrium problems and for optimization problems with equilibrium constraints, Comput. Math. Appl., Volume 55 (2008), pp. 89-100 | DOI
[17] Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems, J. Global Optim., Volume 41 (2008), pp. 117-133 | DOI
[18] Existence theorems for generalized noncoercive equilibrium problems: the quasi-convex case, SIAM J. Optim., Volume 11 (2001), pp. 675-690 | Zbl | DOI
[19] Lexicographically-ordered constraint satisfaction problems, Constraints, Volume 15 (2010), pp. 1-28 | DOI | Zbl
[20] Sur le problémes aux dérivées partielles et leur signification physique [On the problems about partial derivatives and their physical signicance] , Bull. Univ. Princeton, Volume 13 (1902), pp. 49-52
[21] Existence of solutions to general quasiequilibrium problems and applications, J. Optim. Theory Appl., Volume 133 (2007), pp. 317-327 | DOI | Zbl
[22] Almost every convex or quadratic programming problem is well posed, Math. Oper. Res., Volume 29 (2004), pp. 369-382 | Zbl | DOI
[23] Well-posedness for parametric vector equilibrium problems with applications, J. Ind. Manag. Optim., Volume 4 (2008), pp. 313-327 | DOI
[24] Descent methods for monotone equilibrium problems in Banach spaces, J. Comput. Appl. Math., Volume 188 (2006), pp. 165-179 | DOI | Zbl
[25] Constrained convex optimization problemswell-posedness and stability, Numer. Funct. Anal. Optim., Volume 15 (1994), pp. 889-907 | DOI
[26] On constructing total orders and solving vector optimization problems with total orders, J. Global Optim., Volume 50 (2011), pp. 235-247 | DOI | Zbl
[27] Levitin-Polyak well-posedness for parametric quasivariational inequality problem of the Minty type, Positivity, Volume 16 (2012), pp. 527-541 | Zbl | DOI
[28] Convergence of minimizing sequences in problems on the relative extremum, (Russian) Dokl. Akad. Nauk SSSR, Volume 168 (1966), pp. 997-1000
[29] Levitin-Polyak well-posedness of vector equilibrium problems, Math. Methods Oper. Res., Volume 69 (2009), pp. 125-140 | DOI
[30] Well-posedness and L-well-posedness for quasivariational inequalities, J. Optim. Theory Appl., Volume 128 (2006), pp. 119-138 | DOI | Zbl
[31] Levitin-Polyak well-posedness for equilibrium problems with functional constraints, J. Inequal. Appl., Volume 2008 (2008), pp. 1-14 | DOI
[32] \(\epsilon\)-solutions in vector minimization problems, J. Optim. Theory Appl., Volume 43 (1984), pp. 265-276 | DOI
[33] A characterization of Tyhonov well-posedness for minimum problems, with applications to variational inequalities, Numer. Funct. Anal. Optim., Volume 3 (1981), pp. 461-476 | DOI | Zbl
[34] A new approach to Tikhonov well-posedness for Nash equilibria, Optimization, Volume 40 (1997), pp. 385-400 | DOI | Zbl
[35] Pseudocontinuity in optimization and nonzero-sum games, J. Optim. Theory Appl., Volume 120 (2004), pp. 181-197 | Zbl | DOI
[36] Generalized Levitin-Polyak well-posedness of vector equilibrium problems, Fixed Point Theory Appl., Volume 2009 (2009 ), pp. 1-14 | DOI
[37] Levitin-Polyak well-posedness of generalized vector quasi-equilibrium problems with functional constraints, J. Global Optim., Volume 52 (2012), pp. 779-795 | Zbl | DOI
[38] Measures of noncompactness and some applications, Filomat, Volume 12 (1998), pp. 87-120
[39] Hadamard and strong well-posedness for convex programs, SIAM J. Optim., Volume 7 (1997), pp. 519-526 | Zbl | DOI
[40] Existence of solutions of generalized vector equilibrium problems in reflexive Banach spaces, Nonlinear Anal., Volume 74 (2011), pp. 2226-2234 | Zbl | DOI
[41] On the stability of the functional optimization problem, USSR Comput. Math. Math. Phys., Volume 6 (1966), pp. 28-33 | DOI
[42] Well-posed Ky Fan’s point, quasi-variational inequality and Nash equilibrium problems, Nonlinear Anal., Volume 66 (2007), pp. 777-790 | Zbl | DOI
[43] Well-posedness criteria in optimization with application to the calculus of variations, Nonlinear Anal., Volume 25 (1995), pp. 437-453 | DOI | Zbl
[44] Well-posedness and optimization under perturbations, Optimization with data perturbations, II, Ann. Oper. Res., Volume 101 (2001), pp. 351-361 | DOI
Cité par Sources :