Levitin-Polyak well-posedness for lexicographic vector equilibrium problems
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 2, p. 354-367.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We introduce the notions of Levitin-Poljak (LP) well-posedness and LP well-posedness in the generalized sense for the lexicographic vector equilibrium problems. Then, we establish some sufficient conditions for lexicographic vector equilibrium problems to be LP well-posedness at the reference point. Numerous examples are provided to explain that all the assumptions we impose are very relaxed and cannot be dropped. The results in this paper unify, generalize and extend some known results in the literature.
DOI : 10.22436/jnsa.010.02.02
Classification : 90C33, 49K40
Keywords: Levitin-polyak well-posedness, lexicographic vector equilibrium problems, metric spaces.

Wangkeeree, Rabian 1 ; Bantaojai, Thanatporn 2

1 Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;Research Center for Academic Excellence in Mathematics, Naresuan University, Phitsanulok 65000, Thailand
2 Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
@article{JNSA_2017_10_2_a1,
     author = {Wangkeeree, Rabian and Bantaojai, Thanatporn},
     title = {Levitin-Polyak well-posedness for   lexicographic vector equilibrium problems},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {354-367},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2017},
     doi = {10.22436/jnsa.010.02.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.02/}
}
TY  - JOUR
AU  - Wangkeeree, Rabian
AU  - Bantaojai, Thanatporn
TI  - Levitin-Polyak well-posedness for   lexicographic vector equilibrium problems
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 354
EP  - 367
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.02/
DO  - 10.22436/jnsa.010.02.02
LA  - en
ID  - JNSA_2017_10_2_a1
ER  - 
%0 Journal Article
%A Wangkeeree, Rabian
%A Bantaojai, Thanatporn
%T Levitin-Polyak well-posedness for   lexicographic vector equilibrium problems
%J Journal of nonlinear sciences and its applications
%D 2017
%P 354-367
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.02/
%R 10.22436/jnsa.010.02.02
%G en
%F JNSA_2017_10_2_a1
Wangkeeree, Rabian; Bantaojai, Thanatporn. Levitin-Polyak well-posedness for   lexicographic vector equilibrium problems. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 2, p. 354-367. doi : 10.22436/jnsa.010.02.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.02/

[1] Anh, L. Q.; Duy, T. Q.; Kruger, A. Y.; Thao, N. H. Well-posedness for lexicographic vector equilibrium problems, Constructive nonsmooth analysis and related topics, Springer Optim. Appl., Springer, New York, Volume 87 (2014), pp. 159-174 | Zbl | DOI

[2] Anh, L. Q.; Khanh, P. Q.; Van, D. T. M. Well-posedness under relaxed semicontinuity for bilevel equilibrium and optimization problems with equilibrium constraints, J. Optim. Theory Appl., Volume 153 (2012), pp. 42-59 | DOI | Zbl

[3] Anh, L. Q.; Khanh, P. Q.; Van, D. T. M; Yao, J.-C. Well-posedness for vector quasiequilibria, Taiwanese J. Math., Volume 13 (2009), pp. 713-737 | Zbl | DOI

[4] Aubin, J. P.; Frankowska, H. Set-valued analysis, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1990

[5] Banaś, J.; Goebel, K. Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1980

[6] Bianchi, M.; Konnov, I. V.; Pini, R. Lexicographic variational inequalities with applications, Optimization, Volume 56 (2007), pp. 355-367 | DOI

[7] Bianchi, M.; Konnov, I. V.; Pini, R. Lexicographic and sequential equilibrium problems, J. Global Optim., Volume 46 (2010), pp. 551-560 | DOI | Zbl

[8] Blum, E.; Oettli, W. From optimization and variational inequalities to equilibrium problems, Math. Student, Volume 63 (1994), pp. 123-145

[9] Carlson, E. Generalized extensive measurement for lexicographic orders, J. Math. Psych., Volume 54 (2010), pp. 345-351 | DOI | Zbl

[10] Ceng, L. C.; Hadjisavvas, N.; Schaible, S.; Yao, J.-C. Well-posedness for mixed quasivariational-like inequalities, J. Optim. Theory Appl., Volume 139 (2008), pp. 109-225 | DOI | Zbl

[11] Chen, J.-W.; Wan, Z.-P.; Cho, Y. J. Levitin-Polyak well-posedness by perturbations for systems of set-valued vector quasiequilibrium problems, Math. Methods Oper. Res., Volume 77 (2013), pp. 33-64 | DOI

[12] Crespi, G. P.; Guerraggio, A.; Rocca, M. Well posedness in vector optimization problems and vector variational inequalities, J. Optim. Theory Appl., Volume 132 (2007), pp. 213-226 | DOI

[13] Daneš, J. On the Istrăţescu’s measure of noncompactness, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.), Volume 16 (1972), pp. 403-406 | Zbl

[14] Rouhani, B. Djafari; Tarafdar, E.; Watson, P. J. Existence of solutions to some equilibrium problems, J. Optim. Theory Appl., Volume 126 (2005), pp. 97-107 | DOI

[15] Emelichev, V. A.; Gurevsky, E. E.; K. G. Kuzmin On stability of some lexicographic integer optimization problem, Control Cybernet., Volume 39 (2010), pp. 811-826 | Zbl

[16] Fang, Y.-P.; Hu, R.; Huang, N.-J. Well-posedness for equilibrium problems and for optimization problems with equilibrium constraints, Comput. Math. Appl., Volume 55 (2008), pp. 89-100 | DOI

[17] Fang, Y.-P.; Huang, N.-J.; Yao, J.-C. Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems, J. Global Optim., Volume 41 (2008), pp. 117-133 | DOI

[18] Flores-Bazán, F. Existence theorems for generalized noncoercive equilibrium problems: the quasi-convex case, SIAM J. Optim., Volume 11 (2001), pp. 675-690 | Zbl | DOI

[19] Freuder, E. C.; Heffernan, R.; Wallace, R. J.; Wilson, N. Lexicographically-ordered constraint satisfaction problems, Constraints, Volume 15 (2010), pp. 1-28 | DOI | Zbl

[20] Hadamard, J. Sur le problémes aux dérivées partielles et leur signification physique [On the problems about partial derivatives and their physical signicance] , Bull. Univ. Princeton, Volume 13 (1902), pp. 49-52

[21] Hai, N. X.; Khanh, P. Q. Existence of solutions to general quasiequilibrium problems and applications, J. Optim. Theory Appl., Volume 133 (2007), pp. 317-327 | DOI | Zbl

[22] Ioffe, A. D.; Lucchetti, R. E.; Revalski, J. P. Almost every convex or quadratic programming problem is well posed, Math. Oper. Res., Volume 29 (2004), pp. 369-382 | Zbl | DOI

[23] Kimura, K.; Liou, Y.-C.; Wu, S.-Y.; J.-C. Yao Well-posedness for parametric vector equilibrium problems with applications, J. Ind. Manag. Optim., Volume 4 (2008), pp. 313-327 | DOI

[24] Konnov, I. V.; Ali, M. S. S. Descent methods for monotone equilibrium problems in Banach spaces, J. Comput. Appl. Math., Volume 188 (2006), pp. 165-179 | DOI | Zbl

[25] Konsulova, A. S.; Revalski, J. P. Constrained convex optimization problemswell-posedness and stability, Numer. Funct. Anal. Optim., Volume 15 (1994), pp. 889-907 | DOI

[26] Küçük, M.; Soyertem, M.; Küçük, Y. On constructing total orders and solving vector optimization problems with total orders, J. Global Optim., Volume 50 (2011), pp. 235-247 | DOI | Zbl

[27] Lalitha, C. S.; Bhatia, G. Levitin-Polyak well-posedness for parametric quasivariational inequality problem of the Minty type, Positivity, Volume 16 (2012), pp. 527-541 | Zbl | DOI

[28] Levitin, E. S.; Poljak, B. T. Convergence of minimizing sequences in problems on the relative extremum, (Russian) Dokl. Akad. Nauk SSSR, Volume 168 (1966), pp. 997-1000

[29] Li, S. J.; Li, M. H. Levitin-Polyak well-posedness of vector equilibrium problems, Math. Methods Oper. Res., Volume 69 (2009), pp. 125-140 | DOI

[30] Lignola, M. B. Well-posedness and L-well-posedness for quasivariational inequalities, J. Optim. Theory Appl., Volume 128 (2006), pp. 119-138 | DOI | Zbl

[31] Long, X. J.; Huang, N.-J.; Teo, K. L. Levitin-Polyak well-posedness for equilibrium problems with functional constraints, J. Inequal. Appl., Volume 2008 (2008), pp. 1-14 | DOI

[32] Loridan, P. \(\epsilon\)-solutions in vector minimization problems, J. Optim. Theory Appl., Volume 43 (1984), pp. 265-276 | DOI

[33] Lucchetti, R.; Patrone, F. A characterization of Tyhonov well-posedness for minimum problems, with applications to variational inequalities, Numer. Funct. Anal. Optim., Volume 3 (1981), pp. 461-476 | DOI | Zbl

[34] Margiocco, M.; Patrone, F.; Chicco, L. Pusillo A new approach to Tikhonov well-posedness for Nash equilibria, Optimization, Volume 40 (1997), pp. 385-400 | DOI | Zbl

[35] Morgan, J.; Scalzo, V. Pseudocontinuity in optimization and nonzero-sum games, J. Optim. Theory Appl., Volume 120 (2004), pp. 181-197 | Zbl | DOI

[36] Peng, J.-W.; Wang, Y.; Zhao, L.-J. Generalized Levitin-Polyak well-posedness of vector equilibrium problems, Fixed Point Theory Appl., Volume 2009 (2009 ), pp. 1-14 | DOI

[37] Peng, J.-W.; Wu, S.-Y.; Wang, Y. Levitin-Polyak well-posedness of generalized vector quasi-equilibrium problems with functional constraints, J. Global Optim., Volume 52 (2012), pp. 779-795 | Zbl | DOI

[38] Rakočević, V. Measures of noncompactness and some applications, Filomat, Volume 12 (1998), pp. 87-120

[39] Revalski, J. P. Hadamard and strong well-posedness for convex programs, SIAM J. Optim., Volume 7 (1997), pp. 519-526 | Zbl | DOI

[40] Sadeqi, I.; Alizadeh, C. G. Existence of solutions of generalized vector equilibrium problems in reflexive Banach spaces, Nonlinear Anal., Volume 74 (2011), pp. 2226-2234 | Zbl | DOI

[41] Tikhonov, A. N. On the stability of the functional optimization problem, USSR Comput. Math. Math. Phys., Volume 6 (1966), pp. 28-33 | DOI

[42] Yu, J.; Yang, H.; Yu, C. Well-posed Ky Fan’s point, quasi-variational inequality and Nash equilibrium problems, Nonlinear Anal., Volume 66 (2007), pp. 777-790 | Zbl | DOI

[43] Zolezzi, T. Well-posedness criteria in optimization with application to the calculus of variations, Nonlinear Anal., Volume 25 (1995), pp. 437-453 | DOI | Zbl

[44] Zolezzi, T. Well-posedness and optimization under perturbations, Optimization with data perturbations, II, Ann. Oper. Res., Volume 101 (2001), pp. 351-361 | DOI

Cité par Sources :