Vector valued Orlicz-Lorentz sequence spaces and their operator ideals
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 2, p. 338-353.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In the present paper we introduce and study vector valued Orlicz-Lorentz sequence spaces $l_{p,q,M,u,\Delta,A}(X)$ on Banach space $X$ with the help of a Musilak-Orlicz function $M$ and for different positive indices p and q. We also study their cross and topological duals. Finally, we introduce the operator ideals with the help of the corresponding scalar sequence spaces and s-numbers.
DOI : 10.22436/jnsa.010.02.01
Classification : 46A45, 47B06, 47L20
Keywords: Lorentz sequence spaces, s-numbers of operators, Musielak-Orlicz function, difference sequence spaces, operator ideals.

Mohiuddine, S. A. 1 ; Raj, K. 2

1 Operator Theory and Applications Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
2 School of Mathematics, Shri Mata Vaishno Devi University, Katra-182320, J&K, India
@article{JNSA_2017_10_2_a0,
     author = {Mohiuddine, S. A. and Raj, K.},
     title = {Vector valued {Orlicz-Lorentz} sequence spaces and their operator ideals},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {338-353},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2017},
     doi = {10.22436/jnsa.010.02.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.01/}
}
TY  - JOUR
AU  - Mohiuddine, S. A.
AU  - Raj, K.
TI  - Vector valued Orlicz-Lorentz sequence spaces and their operator ideals
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 338
EP  - 353
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.01/
DO  - 10.22436/jnsa.010.02.01
LA  - en
ID  - JNSA_2017_10_2_a0
ER  - 
%0 Journal Article
%A Mohiuddine, S. A.
%A Raj, K.
%T Vector valued Orlicz-Lorentz sequence spaces and their operator ideals
%J Journal of nonlinear sciences and its applications
%D 2017
%P 338-353
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.01/
%R 10.22436/jnsa.010.02.01
%G en
%F JNSA_2017_10_2_a0
Mohiuddine, S. A.; Raj, K. Vector valued Orlicz-Lorentz sequence spaces and their operator ideals. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 2, p. 338-353. doi : 10.22436/jnsa.010.02.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.02.01/

[1] Acharya, L. R. Linear operators and approximation quantities, Dissertation, I.I.T. Kanpur, India, 2008

[2] Alotaibi, A.; Raj, K.; Mohiuddine, S. A. Some generalized difference sequence spaces defined by a sequence of moduli in n-normed spaces, J. Funct. Spaces, Volume 2015 (2015 ), pp. 1-8 | Zbl

[3] Kimpe, N. De Grande-De Generalized sequence spaces, Bull. Soc. Math. Belg., Volume 23 (1971), pp. 123-166

[4] Et, M.; Çolak, R. On some generalized difference sequence spaces, Soochow J. Math., Volume 21 (1995), pp. 377-386

[5] Foralewski, P.; Hudzik, H.; Szymaszkiewicz, L. On some geometric and topological properties of generalized Orlicz- Lorentz sequence spaces, Math. Nachr., Volume 281 (2008), pp. 181-198 | DOI | Zbl

[6] Grothendieck, A. Sur une notion de produit tensoriel topologique d’espaces vectoriels topologiques, et une classe remarquable d’espaces vectoriels liée à cette notion, (French) C. R. Acad. Sci. Paris, Volume 233 (1951), pp. 1556-1558 | Zbl

[7] Gupta, M.; Bhar, A. Generalized Orlicz-Lorentz sequence spaces and corresponding operator ideals, Math. Slovaca, Volume 64 (2014), pp. 1475-1496 | Zbl | DOI

[8] Kamthan, P. K.; M. Gupta Sequence spaces and series, Lecture Notes in Pure and Applied Mathematics , Marcel Dekker, Inc.,, New York, 1981 | DOI

[9] Kato, M. On Lorentz spaces \(l_{p,q}\{E\}\), Hiroshima Math. J., Volume 6 (1976), pp. 73-93

[10] Kızmaz, H. On certain sequence spaces, Canad. Math. Bull., Volume 24 (1981), pp. 169-176

[11] Lindenstrauss, J.; Tzafriri, L. Classical Banach spaces,I , Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin-New York, 1977

[12] Mohiuddine, S. A.; Raj, K.; Alotaibi, A. Generalized spaces of double sequences for Orlicz functions and bounded-regular matrices over n-normed spaces, J. Inequal. Appl., Volume 2014 (2014), pp. 1-16 | DOI | Zbl

[13] Musielak, J. Orlicz spaces and modular spaces, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1983

[14] Patterson, J. Generalized sequence spaces and matrix transformations, PhD diss., Dissertation, I.I.T. Kanpur, India, 1980

[15] Pietsch, A. s-numbers of operators in Banach spaces, Studia Math., Volume 51 (1974), pp. 201-223 | EuDML

[16] Pietsch, A. Eigenvalues and s-numbers, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1987

[17] Raj, K.; Pandoh, S. Some vector-valued statistical convergent sequence spaces, Malaya J. Mat., Volume 3 (2015), pp. 161-167 | Zbl

[18] Raj, K.; Sharma, S. K. Some vector-valued sequence spaces defined by a Musielak-Orlicz function, Rev. Roumaine Math. Pures Appl., Volume 57 (2012), pp. 383-399 | Zbl

[19] W. Rudin Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York- Dsseldorf-Johannesburg, 1976

[20] Savaş, E.; Mursaleen, M. Matrix transformations in some sequence spaces, Istanbul Üniv. Fen Fak. Mat. Derg., Volume 52 (1993), pp. 1-5

[21] Yılmaz, Y.; Özdemir, M. K.; Solak, I.; Candan, M. Operators on some vector valued Orlicz sequence spaces, F. Ü . Fen ve Mühendislik Bilimleri Dergisi, Volume 17 (2005), pp. 59-71

Cité par Sources :