Voir la notice de l'article provenant de la source International Scientific Research Publications
Zhang, Jun 1 ; Pei, Zhi-Li 2 ; Xu, Gao-Chao 3 ; Zou, Xiao-Hui 3 ; Qi, Feng 4
@article{JNSA_2017_10_1_a11, author = {Zhang, Jun and Pei, Zhi-Li and Xu, Gao-Chao and Zou, Xiao-Hui and Qi, Feng}, title = {Integral inequalities of extended {Simpson} type for (\(\alpha,m\))-varepsilon-convex functions}, journal = {Journal of nonlinear sciences and its applications}, pages = {122-129}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2017}, doi = {10.22436/jnsa.010.01.12}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.12/} }
TY - JOUR AU - Zhang, Jun AU - Pei, Zhi-Li AU - Xu, Gao-Chao AU - Zou, Xiao-Hui AU - Qi, Feng TI - Integral inequalities of extended Simpson type for (\(\alpha,m\))-varepsilon-convex functions JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 122 EP - 129 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.12/ DO - 10.22436/jnsa.010.01.12 LA - en ID - JNSA_2017_10_1_a11 ER -
%0 Journal Article %A Zhang, Jun %A Pei, Zhi-Li %A Xu, Gao-Chao %A Zou, Xiao-Hui %A Qi, Feng %T Integral inequalities of extended Simpson type for (\(\alpha,m\))-varepsilon-convex functions %J Journal of nonlinear sciences and its applications %D 2017 %P 122-129 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.12/ %R 10.22436/jnsa.010.01.12 %G en %F JNSA_2017_10_1_a11
Zhang, Jun; Pei, Zhi-Li; Xu, Gao-Chao; Zou, Xiao-Hui; Qi, Feng. Integral inequalities of extended Simpson type for (\(\alpha,m\))-varepsilon-convex functions. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 1, p. 122-129. doi : 10.22436/jnsa.010.01.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.12/
[1] Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., Volume 11 (1998), pp. 91-95 | Zbl | DOI
[2] Some inequalities for m-convex functions, Studia Univ. Babe-Bolyai Math., Volume 38 (1993), pp. 21-28
[3] Inequalities of Hermite-Hadamard type involving an s-convex function with applications, Appl. Math. Comput., Volume 246 (2014), pp. 752-760 | DOI | Zbl
[4] Approximately convex functions, Proc. Amer. Math. Soc., Volume 3 (1952), pp. 821-828
[5] Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., Volume 147 (2004), pp. 137-146 | DOI | Zbl
[6] Hadamard type inequalities for m-convex and \((\alpha,m)\)-convex functions, JIPAM. J. Inequal. Pure Appl. Math., Volume 9 (2008), pp. 1-12
[7] A generalization of the convexity, Seminar on Functional Equations, Approx. and Convex., Cluj- Napoca, Romania (1993)
[8] Inequalities for differentiable mappings with application to special means and quadrature formul, Appl. Math. Lett., Volume 13 (2000), pp. 51-55 | DOI
[9] Some Hermite-Hadamard type inequalities for geometrically quasi-convex functions, Proc. Indian Acad. Sci. Math. Sci., Volume 124 (2014), pp. 333-342 | DOI | Zbl
[10] Hermite-Hadamard-type integral inequalities for functions whose first derivatives are convex, Reprint of Ukraïn. Mat. Zh., 67 (2015), 555–567, Ukrainian Math. J., Volume 67 (2015), pp. 625-640 | DOI
[11] Some generalizations of the convexity , Proceedings of the colloquium on approximation and optimization, Cluj-Napoca, (1985), 329–338, Univ. Cluj-Napoca, Cluj-Napoca, 1985
[12] Hermite-Hadamard type inequalities for geometrically r-convex functions, Studia Sci. Math. Hungar., Volume 51 (2014), pp. 530-546 | DOI | Zbl
[13] Inequalities of Hermite-Hadamard type for extended s-convex functions and applications to means, J. Nonlinear Convex Anal., Volume 16 (2015), pp. 873-890 | Zbl
[14] Some inequalities for (h,m)-convex functions, J. Inequal. Appl., Volume 2014 (2014 ), pp. 1-12 | DOI
[15] Some inequalities of Hermite–Hadamard type for m-harmonic-arithmetically convex functions, ScienceAsia, Volume 41 (2015), pp. 357-361
Cité par Sources :