Integral inequalities of extended Simpson type for ($\alpha,m$)-varepsilon-convex functions
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 1, p. 122-129.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In the paper, the authors establish some integral inequalities of extended Simpson type for $(\alpha,m)-\varepsilon$-convex functions.
DOI : 10.22436/jnsa.010.01.12
Classification : 26A51, 26D15, 41A55
Keywords: Integral inequality, extended Simpson type, \((\alpha،m)-\varepsilon\)-convex function

Zhang, Jun 1 ; Pei, Zhi-Li 2 ; Xu, Gao-Chao 3 ; Zou, Xiao-Hui 3 ; Qi, Feng 4

1 College of Computer Science and Technology, Jilin University, Changchun 130012, China;College of Computer Science and Technology, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region, 028043, China
2 College of Computer Science and Technology, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region, 028043, China
3 College of Computer Science and Technology, Jilin University, Changchun 130012, China
4 Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300160, China;Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China
@article{JNSA_2017_10_1_a11,
     author = {Zhang, Jun and Pei, Zhi-Li and Xu, Gao-Chao and Zou, Xiao-Hui and Qi, Feng},
     title = {Integral inequalities of extended {Simpson} type for (\(\alpha,m\))-varepsilon-convex functions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {122-129},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2017},
     doi = {10.22436/jnsa.010.01.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.12/}
}
TY  - JOUR
AU  - Zhang, Jun
AU  - Pei, Zhi-Li
AU  - Xu, Gao-Chao
AU  - Zou, Xiao-Hui
AU  - Qi, Feng
TI  - Integral inequalities of extended Simpson type for (\(\alpha,m\))-varepsilon-convex functions
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 122
EP  - 129
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.12/
DO  - 10.22436/jnsa.010.01.12
LA  - en
ID  - JNSA_2017_10_1_a11
ER  - 
%0 Journal Article
%A Zhang, Jun
%A Pei, Zhi-Li
%A Xu, Gao-Chao
%A Zou, Xiao-Hui
%A Qi, Feng
%T Integral inequalities of extended Simpson type for (\(\alpha,m\))-varepsilon-convex functions
%J Journal of nonlinear sciences and its applications
%D 2017
%P 122-129
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.12/
%R 10.22436/jnsa.010.01.12
%G en
%F JNSA_2017_10_1_a11
Zhang, Jun; Pei, Zhi-Li; Xu, Gao-Chao; Zou, Xiao-Hui; Qi, Feng. Integral inequalities of extended Simpson type for (\(\alpha,m\))-varepsilon-convex functions. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 1, p. 122-129. doi : 10.22436/jnsa.010.01.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.12/

[1] Dragomir, S. S.; Agarwal, R. P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., Volume 11 (1998), pp. 91-95 | Zbl | DOI

[2] Dragomir, S. S.; Toader, G. Some inequalities for m-convex functions, Studia Univ. Babe-Bolyai Math., Volume 38 (1993), pp. 21-28

[3] Hua, J.; Xi, B.-Y.; F. Qi Inequalities of Hermite-Hadamard type involving an s-convex function with applications, Appl. Math. Comput., Volume 246 (2014), pp. 752-760 | DOI | Zbl

[4] Hyers, D. H.; Ulam, S. M. Approximately convex functions, Proc. Amer. Math. Soc., Volume 3 (1952), pp. 821-828

[5] Kirmaci, U. S. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., Volume 147 (2004), pp. 137-146 | DOI | Zbl

[6] Bakula, M. Klaričić; Özdemir, M. E.; Pečarić, J. Hadamard type inequalities for m-convex and \((\alpha,m)\)-convex functions, JIPAM. J. Inequal. Pure Appl. Math., Volume 9 (2008), pp. 1-12

[7] Miheşan, V. G. A generalization of the convexity, Seminar on Functional Equations, Approx. and Convex., Cluj- Napoca, Romania (1993)

[8] Pearce, C. E. M.; Pečarić, J. Inequalities for differentiable mappings with application to special means and quadrature formul, Appl. Math. Lett., Volume 13 (2000), pp. 51-55 | DOI

[9] Qi, F.; Xi, B.-Y. Some Hermite-Hadamard type inequalities for geometrically quasi-convex functions, Proc. Indian Acad. Sci. Math. Sci., Volume 124 (2014), pp. 333-342 | DOI | Zbl

[10] Qi, F.; Zhang, T.-Y.; Xi, B.-Y. Hermite-Hadamard-type integral inequalities for functions whose first derivatives are convex, Reprint of Ukraïn. Mat. Zh., 67 (2015), 555–567, Ukrainian Math. J., Volume 67 (2015), pp. 625-640 | DOI

[11] Toader, G. Some generalizations of the convexity , Proceedings of the colloquium on approximation and optimization, Cluj-Napoca, (1985), 329–338, Univ. Cluj-Napoca, Cluj-Napoca, 1985

[12] Xi, B.-Y.; Qi, F. Hermite-Hadamard type inequalities for geometrically r-convex functions, Studia Sci. Math. Hungar., Volume 51 (2014), pp. 530-546 | DOI | Zbl

[13] Xi, B.-Y.; Qi, F. Inequalities of Hermite-Hadamard type for extended s-convex functions and applications to means, J. Nonlinear Convex Anal., Volume 16 (2015), pp. 873-890 | Zbl

[14] Xi, B.-Y.; Wang, S.-H.; Qi, F. Some inequalities for (h,m)-convex functions, J. Inequal. Appl., Volume 2014 (2014 ), pp. 1-12 | DOI

[15] Xi, B.-Y.; Zhang, T.-Y.; Qi, F. Some inequalities of Hermite–Hadamard type for m-harmonic-arithmetically convex functions, ScienceAsia, Volume 41 (2015), pp. 357-361

Cité par Sources :