Application of double Laplace decomposition method for solving singular one dimensional system of hyperbolic equations
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 1, p. 111-121.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, the Adomain decomposition methods and double Laplace transform methods are combined to study linear and nonlinear singular one dimensional system of hyperbolic equations. In addition, we check the convergence of double Laplace transform decomposition method applied to our problems. Furthermore, we illustrate our proposed methods by using some examples.
DOI : 10.22436/jnsa.010.01.11
Classification : 35A44, 65M55
Keywords: Double Laplace transform, inverse Laplace transform, system of hyperbolic equations.

Gadain, Hassan Eltayeb 1

1 Mathematics Department, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
@article{JNSA_2017_10_1_a10,
     author = {Gadain, Hassan Eltayeb},
     title = {Application of double {Laplace} decomposition method for solving singular one dimensional system of hyperbolic equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {111-121},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2017},
     doi = {10.22436/jnsa.010.01.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.11/}
}
TY  - JOUR
AU  - Gadain, Hassan Eltayeb
TI  - Application of double Laplace decomposition method for solving singular one dimensional system of hyperbolic equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 111
EP  - 121
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.11/
DO  - 10.22436/jnsa.010.01.11
LA  - en
ID  - JNSA_2017_10_1_a10
ER  - 
%0 Journal Article
%A Gadain, Hassan Eltayeb
%T Application of double Laplace decomposition method for solving singular one dimensional system of hyperbolic equations
%J Journal of nonlinear sciences and its applications
%D 2017
%P 111-121
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.11/
%R 10.22436/jnsa.010.01.11
%G en
%F JNSA_2017_10_1_a10
Gadain, Hassan Eltayeb. Application of double Laplace decomposition method for solving singular one dimensional system of hyperbolic equations. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 1, p. 111-121. doi : 10.22436/jnsa.010.01.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.11/

[1] Abbaoui, K.; Cherruault, Y. Convergence of Adomian’s method applied to differential equations, Comput. Math. Appl., Volume 28 (1994), pp. 103-109 | DOI

[2] Abbaoui, K.; Y. Cherruault Convergence of Adomian’s method applied to nonlinear equations, Math. Comput. Modelling, Volume 20 (1994), pp. 69-73 | DOI

[3] Allan, F. M.; K. Al-Khaled An approximation of the analytic solution of the shock wave equation, J. Comput. Appl. Math., Volume 192 (2006), pp. 301-309 | DOI

[4] Atangana, A.; Noutchie, S. C. Oukouomi On multi-Laplace transform for solving nonlinear partial differential equations with mixed derivatives, Math. Probl. Eng., Volume 2014 (2014 ), pp. 1-9

[5] Babolian, E.; Biazar, J. On the order of convergence of Adomian method, Appl. Math. Comput., Volume 130 (2002), pp. 383-387 | DOI

[6] Cherruault, Y.; Saccomandi, G.; Some, B. New results for convergence of Adomian’s method applied to integral equations, Math. Comput. Modelling, Volume 16 (1992), pp. 85-93 | Zbl | DOI

[7] El-Sayed, S. M.; Kaya, D. On the numerical solution of the system of two-dimensional Burgers’ equations by the decomposition method, Appl. Math. Comput., Volume 158 (2004), pp. 101-109 | Zbl | DOI

[8] Eltayeb, H.; Kılıçman, A. A note on solutions of wave, Laplace’s and heat equations with convolution terms by using a double Laplace transform, Appl. Math. Lett., Volume 21 (2008), pp. 1324-1329 | Zbl | DOI

[9] Hashim, I.; Noorani, M. S. M.; Al-Hadidi, M. R. Said Solving the generalized Burgers-Huxley equation using the Adomian decomposition method, Math. Comput. Modelling, Volume 43 (2006), pp. 1404-1411 | Zbl | DOI

[10] Kaya, D.; Inan, I. E. A convergence analysis of the ADM and an application, Appl. Math. Comput., Volume 161 (2005), pp. 1015-1025 | Zbl | DOI

[11] Kaya, D.; Inan, I. E. A numerical application of the decomposition method for the combined KdV-MKdV equation, Appl. Math. Comput., Volume 168 (2005), pp. 915-926 | DOI

[12] Khuri, S. A. A Laplace decomposition algorithm applied to a class of nonlinear differential equations, J. Appl. Math., Volume 1 (2001), pp. 141-155 | Zbl

[13] Kılıçman, A.; Eltayeb, H. A note on defining singular integral as distribution and partial differential equations with convolution term, Math. Comput. Modelling, Volume 49 (2009), pp. 327-336 | DOI | Zbl

[14] Kılıçman, A.; Gadain, H. E. On the applications of Laplace and Sumudu transforms, J. Franklin Inst., Volume 347 (2010), pp. 848-862 | Zbl | DOI

[15] Mavoungou, T.; Cherruault, Y. Numerical study of Fisher’s equation by Adomian’s method, Math. Comput. Modelling, Volume 19 (1994), pp. 89-95 | DOI | Zbl

[16] S. S. Ray A numerical solution of the coupled sine-Gordon equation using the modified decomposition method, Appl. Math. Comput., Volume 175 (2006), pp. 1046-1054 | DOI | Zbl

[17] N. H. Sweilam Harmonic wave generation in non linear thermoelasticity by variational iteration method and Adomian’s method, J. Comput. Appl. Math., Volume 207 (2007), pp. 64-72 | DOI

[18] Yusufoğlu, E. Numerical solution of Duffing equation by the Laplace decomposition algorithm, Appl. Math. Comput., Volume 177 (2006), pp. 572-580 | DOI | Zbl

Cité par Sources :