Quadratic $\rho$-functional inequalities in $\beta$-homogeneous normed spaces
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 1, p. 104-110.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we solve the quadratic $\rho$-functional inequalities
$\|f(x+y)+f(x-y)-2f(x)-2f(y)\|\leq\|\rho(4f(\frac{x+y}{2})+f(x-y)-2f(x)-2f(y))\|,$
where $\rho$ is a fixed complex number with $|\rho|1$, and
$\|4f(\frac{x+y}{2})+f(x-y)-2f(x)-2f(y)\|\leq\|\rho(f(x+y)+f(x-y)-2f(x)-2f(y))\|,$
where $\rho$ is a fixed complex number with $|\rho|1$. Using the direct method, we prove the Hyers-Ulam stability of the quadratic $\rho$-functional inequalities (1) and (2) in $\beta$- homogeneous complex Banach spaces.
DOI : 10.22436/jnsa.010.01.10
Classification : 39B62, 39B72, 39B52, 39B82
Keywords: Hyers-Ulam stability, \(\beta\)-homogeneous space, quadratic \(\rho\)-functional inequality.

Park, Yuanfeng 1 ; Lu, Yinhua 2 ; Cui, Gang 3 ; Jin, Choonkil 3

1 Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
2 Department of Mathematics, School of Science, ShenYang University of Technology, Shenyang 110870, P. R. China;Department of Mathematics, Zhejiang University, Hangzhou 310027, P. R. China
3 Department of Mathematics, Yanbian University, Yanji 133001, P. R. China
@article{JNSA_2017_10_1_a9,
     author = {Park, Yuanfeng and Lu, Yinhua and Cui, Gang and Jin, Choonkil},
     title = {Quadratic \(\rho\)-functional inequalities in \(\beta\)-homogeneous normed spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {104-110},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2017},
     doi = {10.22436/jnsa.010.01.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.10/}
}
TY  - JOUR
AU  - Park, Yuanfeng
AU  - Lu, Yinhua
AU  - Cui, Gang
AU  - Jin, Choonkil
TI  - Quadratic \(\rho\)-functional inequalities in \(\beta\)-homogeneous normed spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 104
EP  - 110
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.10/
DO  - 10.22436/jnsa.010.01.10
LA  - en
ID  - JNSA_2017_10_1_a9
ER  - 
%0 Journal Article
%A Park, Yuanfeng
%A Lu, Yinhua
%A Cui, Gang
%A Jin, Choonkil
%T Quadratic \(\rho\)-functional inequalities in \(\beta\)-homogeneous normed spaces
%J Journal of nonlinear sciences and its applications
%D 2017
%P 104-110
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.10/
%R 10.22436/jnsa.010.01.10
%G en
%F JNSA_2017_10_1_a9
Park, Yuanfeng; Lu, Yinhua; Cui, Gang; Jin, Choonkil. Quadratic \(\rho\)-functional inequalities in \(\beta\)-homogeneous normed spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 1, p. 104-110. doi : 10.22436/jnsa.010.01.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.10/

[1] T. Aoki On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66 | DOI

[2] Cholewa, P. W. Remarks on the stability of functional equations, Aequationes Math., Volume 27 (1984), pp. 76-86

[3] Găvruţa, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436 | Zbl | DOI

[4] Hyers, D. H. On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A., Volume 27 (1941), pp. 222-224

[5] Park, C.-K. Additive \(\rho\)-functional inequalities and equations, J. Math. Inequal., Volume 9 (2015), pp. 17-26

[6] C.-K. Park Additive \(\rho\)-functional inequalities in non-Archimedean normed spaces, J. Math. Inequal., Volume 9 (2015), pp. 397-407 | Zbl

[7] Park, C.-K.; Ghasemi, K.; Ghaleh, S. G.; Jang, S. Y. Approximate \(\eta\)-Jordan \(*\)-homomorphisms in \(C^*\)-algebras, J. Comput. Anal. Appl., Volume 15 (2013), pp. 365-368 | Zbl

[8] Park, C.-K.; Najati, A.; S. Y. Jang Fixed points and fuzzy stability of an additive-quadratic functional equation, J. Comput. Anal. Appl., Volume 15 (2013), pp. 452-462 | Zbl

[9] Rassias, T. M. On the stability of the linear mapping in Banach spaces , Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300 | DOI

[10] S. Rolewicz Metric linear spaces, Monografie Matematyczne , Tom, [Mathematical Monographs] PWN-Polish Scientific Publishers, Warsaw, 1972

[11] Shagholi, S.; Gordji, M. E.; Savadkouhi, M. Bavand Nearly ternary cubic homomorphism in ternary Fréchet algebras, J. Comput. Anal. Appl., Volume 13 (2011), pp. 1106-1114 | Zbl

[12] Shagholi, S.; Gordji, M. E.; M. Bavand Savadkouhi Stability of ternary quadratic derivation on ternary Banach algebras, J. Comput. Anal. Appl., Volume 13 (2011), pp. 1097-1105

[13] Shin, D. Y.; Park, C.-K.; Farhadabadi, S. On the superstability of ternary Jordan \(C^*\)-homomorphisms, J. Comput. Anal. Appl., Volume 16 (2014), pp. 964-973 | Zbl

[14] Shin, D. Y.; Park, C.-K.; Farhadabadi, S. Stability and superstability of \(J^*\)-homomorphisms and \(J^*\)-derivations for a generalized Cauchy-Jensen equation, J. Comput. Anal. Appl., Volume 17 (2014), pp. 125-134 | Zbl

[15] Skof, F. Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, Volume 53 (1983), pp. 113-129 | DOI

[16] Ulam, S. M. A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers, New York-London, 1960

Cité par Sources :