Voir la notice de l'article provenant de la source International Scientific Research Publications
$\|f(x+y)+f(x-y)-2f(x)-2f(y)\|\leq\|\rho(4f(\frac{x+y}{2})+f(x-y)-2f(x)-2f(y))\|,$ |
$\|4f(\frac{x+y}{2})+f(x-y)-2f(x)-2f(y)\|\leq\|\rho(f(x+y)+f(x-y)-2f(x)-2f(y))\|,$ |
Park, Yuanfeng 1 ; Lu, Yinhua 2 ; Cui, Gang 3 ; Jin, Choonkil 3
@article{JNSA_2017_10_1_a9, author = {Park, Yuanfeng and Lu, Yinhua and Cui, Gang and Jin, Choonkil}, title = {Quadratic \(\rho\)-functional inequalities in \(\beta\)-homogeneous normed spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {104-110}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2017}, doi = {10.22436/jnsa.010.01.10}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.10/} }
TY - JOUR AU - Park, Yuanfeng AU - Lu, Yinhua AU - Cui, Gang AU - Jin, Choonkil TI - Quadratic \(\rho\)-functional inequalities in \(\beta\)-homogeneous normed spaces JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 104 EP - 110 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.10/ DO - 10.22436/jnsa.010.01.10 LA - en ID - JNSA_2017_10_1_a9 ER -
%0 Journal Article %A Park, Yuanfeng %A Lu, Yinhua %A Cui, Gang %A Jin, Choonkil %T Quadratic \(\rho\)-functional inequalities in \(\beta\)-homogeneous normed spaces %J Journal of nonlinear sciences and its applications %D 2017 %P 104-110 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.10/ %R 10.22436/jnsa.010.01.10 %G en %F JNSA_2017_10_1_a9
Park, Yuanfeng; Lu, Yinhua; Cui, Gang; Jin, Choonkil. Quadratic \(\rho\)-functional inequalities in \(\beta\)-homogeneous normed spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 1, p. 104-110. doi : 10.22436/jnsa.010.01.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.10/
[1] On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66 | DOI
[2] Remarks on the stability of functional equations, Aequationes Math., Volume 27 (1984), pp. 76-86
[3] A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436 | Zbl | DOI
[4] On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A., Volume 27 (1941), pp. 222-224
[5] Additive \(\rho\)-functional inequalities and equations, J. Math. Inequal., Volume 9 (2015), pp. 17-26
[6] Additive \(\rho\)-functional inequalities in non-Archimedean normed spaces, J. Math. Inequal., Volume 9 (2015), pp. 397-407 | Zbl
[7] Approximate \(\eta\)-Jordan \(*\)-homomorphisms in \(C^*\)-algebras, J. Comput. Anal. Appl., Volume 15 (2013), pp. 365-368 | Zbl
[8] Fixed points and fuzzy stability of an additive-quadratic functional equation, J. Comput. Anal. Appl., Volume 15 (2013), pp. 452-462 | Zbl
[9] On the stability of the linear mapping in Banach spaces , Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300 | DOI
[10] Metric linear spaces, Monografie Matematyczne , Tom, [Mathematical Monographs] PWN-Polish Scientific Publishers, Warsaw, 1972
[11] Nearly ternary cubic homomorphism in ternary Fréchet algebras, J. Comput. Anal. Appl., Volume 13 (2011), pp. 1106-1114 | Zbl
[12] Stability of ternary quadratic derivation on ternary Banach algebras, J. Comput. Anal. Appl., Volume 13 (2011), pp. 1097-1105
[13] On the superstability of ternary Jordan \(C^*\)-homomorphisms, J. Comput. Anal. Appl., Volume 16 (2014), pp. 964-973 | Zbl
[14] Stability and superstability of \(J^*\)-homomorphisms and \(J^*\)-derivations for a generalized Cauchy-Jensen equation, J. Comput. Anal. Appl., Volume 17 (2014), pp. 125-134 | Zbl
[15] Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, Volume 53 (1983), pp. 113-129 | DOI
[16] A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers, New York-London, 1960
Cité par Sources :