Voir la notice de l'article provenant de la source International Scientific Research Publications
Yanlong, Yang 1 ; Xicai, Deng 2 ; Shuwen, Xiang 1 ; Wensheng, Jia 1
@article{JNSA_2017_10_1_a7, author = {Yanlong, Yang and Xicai, Deng and Shuwen, Xiang and Wensheng, Jia}, title = {Well-posedness for a class of strong vector equilibrium problems}, journal = {Journal of nonlinear sciences and its applications}, pages = {84-91}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2017}, doi = {10.22436/jnsa.010.01.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.08/} }
TY - JOUR AU - Yanlong, Yang AU - Xicai, Deng AU - Shuwen, Xiang AU - Wensheng, Jia TI - Well-posedness for a class of strong vector equilibrium problems JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 84 EP - 91 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.08/ DO - 10.22436/jnsa.010.01.08 LA - en ID - JNSA_2017_10_1_a7 ER -
%0 Journal Article %A Yanlong, Yang %A Xicai, Deng %A Shuwen, Xiang %A Wensheng, Jia %T Well-posedness for a class of strong vector equilibrium problems %J Journal of nonlinear sciences and its applications %D 2017 %P 84-91 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.08/ %R 10.22436/jnsa.010.01.08 %G en %F JNSA_2017_10_1_a7
Yanlong, Yang; Xicai, Deng; Shuwen, Xiang; Wensheng, Jia. Well-posedness for a class of strong vector equilibrium problems. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 1, p. 84-91. doi : 10.22436/jnsa.010.01.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.08/
[1] Infinite-dimensional analysis, A hitchhiker’s guide, Second edition, Springer-Verlag, Berlin, 1999
[2] Structural stability implies robustness to bounded rationality, J. Econom. Theory, Volume 101 (2001), pp. 395-422 | DOI
[3] On a generic optimization theorem of Petar Kenderov, Nonlinear Anal., Volume 12 (1988), pp. 647-655 | Zbl | DOI
[4] Well-posedness for vector equilibrium problems, Math. Methods Oper. Res., Volume 70 (2009), pp. 171-182 | DOI
[5] Vector optimization, Set-valued and variational analysis, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin, 2005
[6] Well-posed generalized vector equilibrium problems, J. Inequal. Appl., Volume 2014 (2014 ), pp. 1-12 | DOI | Zbl
[7] On variational principles, level sets, well-posedness, and \(\varepsilon\)-solutions in vector optimization, J. Optim. Theory Appl., Volume 89 (1996), pp. 325-349 | Zbl | DOI
[8] Well-posed optimization problems, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1993
[9] Points of continuity of semicontinuous functions, Publ. Math. Debrecen., Volume 2 (1951), pp. 100-102
[10] Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory Appl., Volume 67 (1990), pp. 297-320 | DOI
[11] Vector variational inequalities and vector equilibria, Mathematical theories, Nonconvex Optimization and its Applications, 38. Kluwer Academic Publishers, Dordrecht, 2000 | DOI
[12] Extended well-posedness properties of vector optimization problems, J. Optim. Theory Appl., Volume 106 (2000), pp. 165-182 | DOI
[13] Extended and strongly extended well-posedness of set-valued optimization problems, Math. Methods Oper. Res., Volume 53 (2001), pp. 101-116 | DOI | Zbl
[14] Pointwise well-posedness of perturbed vector optimization problems in a vector-valued variational principle, J. Optim. Theory Appl., Volume 108 (2001), pp. 671-686 | DOI | Zbl
[15] Most of the optimization problems have unique solution, in: B Brosowski, F. Deutsch (Eds.), Proceedings, Oberwolhfach on Parametric Optimization, in: Birkhauser International Series of Numerical Mathematics, Birkhauser, Basel, Volume 72 (1984), pp. 203-216 | DOI
[16] Most of the two-person zero-sum games have unique solution , Workshop/Miniconference on Functional Analysis and Optimization, Canberra, (1988), 73–82, Proc. Centre Math. Anal. Austral. Nat. Univ., Austral. Nat. Univ., Canberra, Volume 20 (1988), pp. 73-82 | Zbl
[17] Convergence of minimizing sequences in conditional extremum problems, Dokl. Akad. Nauk SSSR, Volume 168 (1966), pp. 764-767 | Zbl
[18] Levitin-Polyak well-posedness of vector equilibrium problems, Math. Methods Oper. Res., Volume 69 (2009), pp. 125-140 | DOI
[19] Hadamard well-posed vector optimization problems, J. Global Optim., Volume 46 (2010), pp. 383-393 | DOI
[20] Theory of vector optimization, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin, 1989
[21] Well-posedness towards vector optimizationn, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin, Volume 294 (1987), pp. 194-207 | DOI
[22] Well-posedness and convexity in vector optimization, Math. Methods Oper. Res., Volume 58 (2003), pp. 375-385 | DOI
[23] ell-posedness and scalarization in vector optimization, J. Optim. Theory Appl., Volume 126 (2005), pp. 391-409 | DOI
[24] Generic uniqueness of solutions for a class of vector Ky Fan inequalities, J. Optim. Theory Appl., Volume 155 (2012), pp. 165-179 | Zbl | DOI
[25] The uniqueness of saddle points, Bull. Polish Acad. Sci. Math., Volume 43 (1995), pp. 119-129
[26] On the stability of the functional optimization problem, U.S.S.R. Comput. Math. Math. Phys., Volume 6 (1966), pp. 28-33 | DOI
[27] Essential equilibria of n-person noncooperative games, J. Math. Econom., Volume 31 (1999), pp. 361-372 | DOI
[28] Generic uniqueness of equilibrium points, Nonlinear Anal., Volume 74 (2011), pp. 6326-6332 | DOI | Zbl
[29] Structural stability and robustness to bounded rationality for non-compact cases, J. Global Optim., Volume 44 (2009), pp. 149-157 | Zbl | DOI
[30] On structural stability and robustness to bounded rationality, Nonlinear Anal., Volume 65 (2006), pp. 583-592 | Zbl | DOI
[31] Generic well-posedness of minimization problems with mixed continuous constraints, Nonlinear Anal., Volume 64 (2006), pp. 2381-2399 | DOI | Zbl
[32] Generic existence of Lipschitzian solutions of optimal control problems without convexity assumptions, J. Math. Anal. Appl., Volume 335 (2007), pp. 962-973 | Zbl | DOI
[33] Generalized well-posedness for symmetric vector quasi-equilibrium problems, J. Appl. Math., Volume 2015 (2015 ), pp. 1-10 | Zbl
Cité par Sources :