Well-posedness for a class of strong vector equilibrium problems
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 1, p. 84-91.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we first construct a complete metric space $\Lambda$ consisting of a class of strong vector equilibrium problems (for short, (SVEP)) satisfying some conditions. Under the abstract framework, we introduce a notion of well-posedness for the (SVEP), which unifies its Hadamard and Tikhonov well-posedness. Furthermore, we prove that there exists a dense $G_{\delta}$ set Q of $\Lambda$ such that each (SVEP) in Q is well-posed, that is, the majority (in Baire category sense) of (SVEP) in $\Lambda$ is well-posed. Finally, metric characterizations on the well-posedness for the (SVEP) are given.
DOI : 10.22436/jnsa.010.01.08
Classification : 49K40, 90C31
Keywords: Strong vector equilibrium problems, well-posedness, dense set, metric characterizations.

Yanlong, Yang 1 ; Xicai, Deng 2 ; Shuwen, Xiang 1 ; Wensheng, Jia 1

1 School of computer science and technology, Guizhou University, Guiyang 550025, China
2 Department of Mathematics and Computer, Guizhou Normal College, Guiyang 550018, China
@article{JNSA_2017_10_1_a7,
     author = {Yanlong, Yang and Xicai, Deng and Shuwen, Xiang and Wensheng, Jia},
     title = {Well-posedness for a class of strong vector equilibrium problems},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {84-91},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2017},
     doi = {10.22436/jnsa.010.01.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.08/}
}
TY  - JOUR
AU  - Yanlong, Yang
AU  - Xicai, Deng
AU  - Shuwen, Xiang
AU  - Wensheng, Jia
TI  - Well-posedness for a class of strong vector equilibrium problems
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 84
EP  - 91
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.08/
DO  - 10.22436/jnsa.010.01.08
LA  - en
ID  - JNSA_2017_10_1_a7
ER  - 
%0 Journal Article
%A Yanlong, Yang
%A Xicai, Deng
%A Shuwen, Xiang
%A Wensheng, Jia
%T Well-posedness for a class of strong vector equilibrium problems
%J Journal of nonlinear sciences and its applications
%D 2017
%P 84-91
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.08/
%R 10.22436/jnsa.010.01.08
%G en
%F JNSA_2017_10_1_a7
Yanlong, Yang; Xicai, Deng; Shuwen, Xiang; Wensheng, Jia. Well-posedness for a class of strong vector equilibrium problems. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 1, p. 84-91. doi : 10.22436/jnsa.010.01.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.08/

[1] Aliprantis, C. D.; Border, K. C. Infinite-dimensional analysis, A hitchhiker’s guide, Second edition, Springer-Verlag, Berlin, 1999

[2] Anderlini, L.; Canning, D. Structural stability implies robustness to bounded rationality, J. Econom. Theory, Volume 101 (2001), pp. 395-422 | DOI

[3] G. Beer On a generic optimization theorem of Petar Kenderov, Nonlinear Anal., Volume 12 (1988), pp. 647-655 | Zbl | DOI

[4] Bianchi, M.; Kassay, G.; Pini, R. Well-posedness for vector equilibrium problems, Math. Methods Oper. Res., Volume 70 (2009), pp. 171-182 | DOI

[5] Chen, G.-Y.; Huang, X.-X.; Yang, X.-Q.; / Vector optimization, Set-valued and variational analysis, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin, 2005

[6] Deng, X.-C.; Xiang, S.-W. Well-posed generalized vector equilibrium problems, J. Inequal. Appl., Volume 2014 (2014 ), pp. 1-12 | DOI | Zbl

[7] Dentcheva, D.; Helbig, S. On variational principles, level sets, well-posedness, and \(\varepsilon\)-solutions in vector optimization, J. Optim. Theory Appl., Volume 89 (1996), pp. 325-349 | Zbl | DOI

[8] Dontchev, A. L.; Zolezzi, T. Well-posed optimization problems, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1993

[9] Fort, M. K. Points of continuity of semicontinuous functions, Publ. Math. Debrecen., Volume 2 (1951), pp. 100-102

[10] Gerth, C.; Weidner, P. Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory Appl., Volume 67 (1990), pp. 297-320 | DOI

[11] (ed.), F. Giannessi Vector variational inequalities and vector equilibria, Mathematical theories, Nonconvex Optimization and its Applications, 38. Kluwer Academic Publishers, Dordrecht, 2000 | DOI

[12] X.-X. Huang Extended well-posedness properties of vector optimization problems, J. Optim. Theory Appl., Volume 106 (2000), pp. 165-182 | DOI

[13] Huang, X.-X. Extended and strongly extended well-posedness of set-valued optimization problems, Math. Methods Oper. Res., Volume 53 (2001), pp. 101-116 | DOI | Zbl

[14] Huang, X.-X. Pointwise well-posedness of perturbed vector optimization problems in a vector-valued variational principle, J. Optim. Theory Appl., Volume 108 (2001), pp. 671-686 | DOI | Zbl

[15] Kenderov, P. S. Most of the optimization problems have unique solution, in: B Brosowski, F. Deutsch (Eds.), Proceedings, Oberwolhfach on Parametric Optimization, in: Birkhauser International Series of Numerical Mathematics, Birkhauser, Basel, Volume 72 (1984), pp. 203-216 | DOI

[16] Kenderov, P. S.; Ribarska, N. K. Most of the two-person zero-sum games have unique solution , Workshop/Miniconference on Functional Analysis and Optimization, Canberra, (1988), 73–82, Proc. Centre Math. Anal. Austral. Nat. Univ., Austral. Nat. Univ., Canberra, Volume 20 (1988), pp. 73-82 | Zbl

[17] Levitin, E. S.; Polyak, B. T. Convergence of minimizing sequences in conditional extremum problems, Dokl. Akad. Nauk SSSR, Volume 168 (1966), pp. 764-767 | Zbl

[18] Li, S. J.; Li, M. H. Levitin-Polyak well-posedness of vector equilibrium problems, Math. Methods Oper. Res., Volume 69 (2009), pp. 125-140 | DOI

[19] Li, S. J.; Zhang, W. Y. Hadamard well-posed vector optimization problems, J. Global Optim., Volume 46 (2010), pp. 383-393 | DOI

[20] Luc, D. T. Theory of vector optimization, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin, 1989

[21] R. Lucchetti Well-posedness towards vector optimizationn, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin, Volume 294 (1987), pp. 194-207 | DOI

[22] Miglierina, E.; Molho, E. Well-posedness and convexity in vector optimization, Math. Methods Oper. Res., Volume 58 (2003), pp. 375-385 | DOI

[23] Miglierina, E.; Molho, E.; Rocca, M. ell-posedness and scalarization in vector optimization, J. Optim. Theory Appl., Volume 126 (2005), pp. 391-409 | DOI

[24] Peng, D. T.; Yu, J.; Xiu, N. H. Generic uniqueness of solutions for a class of vector Ky Fan inequalities, J. Optim. Theory Appl., Volume 155 (2012), pp. 165-179 | Zbl | DOI

[25] Tan, K.-K.; Yu, J.; Yuan, X.-Z. The uniqueness of saddle points, Bull. Polish Acad. Sci. Math., Volume 43 (1995), pp. 119-129

[26] Tyhonov, A. N. On the stability of the functional optimization problem, U.S.S.R. Comput. Math. Math. Phys., Volume 6 (1966), pp. 28-33 | DOI

[27] Yu, J. Essential equilibria of n-person noncooperative games, J. Math. Econom., Volume 31 (1999), pp. 361-372 | DOI

[28] Yu, J.; Peng, D.-T.; S.-W. Xiang Generic uniqueness of equilibrium points, Nonlinear Anal., Volume 74 (2011), pp. 6326-6332 | DOI | Zbl

[29] Yu, J.; Yang, H.; C. Yu Structural stability and robustness to bounded rationality for non-compact cases, J. Global Optim., Volume 44 (2009), pp. 149-157 | Zbl | DOI

[30] Yu, C.; Yu, J. On structural stability and robustness to bounded rationality, Nonlinear Anal., Volume 65 (2006), pp. 583-592 | Zbl | DOI

[31] Zaslavski, A. J. Generic well-posedness of minimization problems with mixed continuous constraints, Nonlinear Anal., Volume 64 (2006), pp. 2381-2399 | DOI | Zbl

[32] Zaslavski, A. J. Generic existence of Lipschitzian solutions of optimal control problems without convexity assumptions, J. Math. Anal. Appl., Volume 335 (2007), pp. 962-973 | Zbl | DOI

[33] Zhang, W.-B.; Huang, N.-J.; O’Regan, D. Generalized well-posedness for symmetric vector quasi-equilibrium problems, J. Appl. Math., Volume 2015 (2015 ), pp. 1-10 | Zbl

Cité par Sources :