On the invariant measure of a piecewise-smooth circle homeomorphism of Zygmund class
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 1, p. 48-59.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We prove that the invariant probability measure of an orientation preserving circle homeomorphism f with several break points (at which the derivative $\acute{f}$ has jumps) is singular with respect to Lebesgue measure, if $\acute{f}$ satisfies certain condition and the product of jump ratios at break points is non-trivial.
DOI : 10.22436/jnsa.010.01.05
Classification : 37E10, 37C15, 26D99
Keywords: Break point, circle homeomorphism, invariant measure, rotation number.

Akhatkulov, Sokhobiddin 1 ; Noorani, Mohd. Salmi Md. 1 ; Akhadkulov, Habibulla 2

1 School of Mathematical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
2 School of Quantitative Sciences, University Utara Malaysia, CAS 06010, UUM Sintok, Kedah DA, Malaysia
@article{JNSA_2017_10_1_a4,
     author = {Akhatkulov, Sokhobiddin and Noorani, Mohd. Salmi Md. and Akhadkulov, Habibulla},
     title = {On the invariant measure of a piecewise-smooth circle homeomorphism of {Zygmund} class},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {48-59},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2017},
     doi = {10.22436/jnsa.010.01.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.05/}
}
TY  - JOUR
AU  - Akhatkulov, Sokhobiddin
AU  - Noorani, Mohd. Salmi Md.
AU  - Akhadkulov, Habibulla
TI  - On the invariant measure of a piecewise-smooth circle homeomorphism of Zygmund class
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 48
EP  - 59
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.05/
DO  - 10.22436/jnsa.010.01.05
LA  - en
ID  - JNSA_2017_10_1_a4
ER  - 
%0 Journal Article
%A Akhatkulov, Sokhobiddin
%A Noorani, Mohd. Salmi Md.
%A Akhadkulov, Habibulla
%T On the invariant measure of a piecewise-smooth circle homeomorphism of Zygmund class
%J Journal of nonlinear sciences and its applications
%D 2017
%P 48-59
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.05/
%R 10.22436/jnsa.010.01.05
%G en
%F JNSA_2017_10_1_a4
Akhatkulov, Sokhobiddin; Noorani, Mohd. Salmi Md.; Akhadkulov, Habibulla. On the invariant measure of a piecewise-smooth circle homeomorphism of Zygmund class. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 1, p. 48-59. doi : 10.22436/jnsa.010.01.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.05/

[1] Akhadkulov, Kh. A. On some circle homeomorphisms with break-type singularities, (Russian) Uspekhi Mat. Nauk, 61 (2006), 183–184, translation in Russian Math. Surveys, Volume 61 (2006), pp. 981-983

[2] Akhadkulov, H.; Noorani, M. S. M.; Akhatkulov, S. Renormalizations of circle diffeomorphisms with a break-type singularity, ArXiv, Volume 2015 (2015 ), pp. 1-26 | Zbl | DOI

[3] V. I. Arnol’d Small denominators, I , (Russian) Izv. Akad. Nauk SSSR Ser. Mat.Mapping the circle onto itself, , Volume 25 (1961), pp. 21-68

[4] Cornfeld, I. P.; Fomin, S. V.; Sinaı, Ya. G. Ergodic theory, Translated from the Russian by A. B. Sosinskiı, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, New York, 1982 | DOI

[5] Melo, W. de; Strien, S. van One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Springer-Verlag, Berlin, 1993

[6] Denjoy, A. Sur les courbes définies par les équations différentielles a la surface du tore, J. Math. Pure Appl., Volume 11 (1932), pp. 333-376 | Zbl | EuDML

[7] Dzhalilov, A. A.; K. M. Khanin On an invariant measure for homeomorphisms of a circle with a point of break, Funct. Anal. Appl., Volume 32 (1998), pp. 153-161 | DOI | Zbl

[8] Dzhalilov, A.; Liousse, I.; Mayer, D. Singular measures of piecewise smooth circle homeomorphisms with two break points, Discrete Contin. Dyn. Syst., Volume 24 (2009), pp. 381-403 | DOI

[9] Dzhalilov, A. A.; Maıer, D.; Safarov, U. A. Piecewise-smooth circle homeomorphisms with several break points, (Russian) Izv. Ross. Akad. Nauk Ser. Mat., 76 (2012), 101–120, translation in Izv. Math., Volume 76 (2012), pp. 94-112 | DOI | Zbl

[10] Herman, M. R. Sur la conjugaison différentiable des difféomorphismes du cercle a des rotations, (French) Inst. Hautes tudes Sci. Publ. Math., Volume 49 (1979), pp. 5-233 | DOI | Zbl

[11] Hu, J.; Sullivan, D. P. Topological conjugacy of circle diffeomorphisms, Ergodic Theory Dynam. Systems, Volume 17 (1997), pp. 173-186 | DOI

[12] Katznelson, Y.; Ornstein, D. The absolute continuity of the conjugation of certain diffeomorphisms of the circle, Ergodic Theory Dynam. Systems, Volume 9 (1989), pp. 681-690 | DOI

[13] J. Moser A rapidly convergent iteration method and non-linear differential equations, II, Ann. Scuola Norm. Sup. Pisa, Volume 20 (1966), pp. 499-535 | EuDML | Zbl

[14] Sinaı, Ya. G.; Khanin, K. M. Smoothness of conjugacies of diffeomorphisms of the circle with rotations, (Russian) Uspekhi Mat. Nauk, 44 (1989), 57–82, translation in Russian Math. Surveys, Volume 44 (1989), pp. 69-99 | DOI | Zbl

[15] Vul, E. B.; Khanin, K. M. Homeomorphisms of the circle with fracture-type singularities, (Russian) Uspekhi Mat. Nauk, 45 (1990), 189–190, translation in Russian Math. Surveys, Volume 45 (1990), pp. 229-230 | DOI

[16] Yoccoz, J. C. Il n’y a pas de contre-exemple de Denjoy analytique, (French) [There are no analytic Denjoy counterexamples] C. R. Acad. Sci. Paris Sér. I Math., Volume 298 (1984), pp. 141-144 | Zbl

[17] Zygmund, A. Trigonometric series, Vol. I, II, Third edition, With a foreword by Robert A. Fefferman,/ Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002

Cité par Sources :