Voir la notice de l'article provenant de la source International Scientific Research Publications
Han, Sang-Eon 1
@article{JNSA_2017_10_1_a3, author = {Han, Sang-Eon}, title = {Almost fixed point property for digital spaces associated with {Marcus-Wyse} topological spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {34-47}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2017}, doi = {10.22436/jnsa.010.01.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.04/} }
TY - JOUR AU - Han, Sang-Eon TI - Almost fixed point property for digital spaces associated with Marcus-Wyse topological spaces JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 34 EP - 47 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.04/ DO - 10.22436/jnsa.010.01.04 LA - en ID - JNSA_2017_10_1_a3 ER -
%0 Journal Article %A Han, Sang-Eon %T Almost fixed point property for digital spaces associated with Marcus-Wyse topological spaces %J Journal of nonlinear sciences and its applications %D 2017 %P 34-47 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.04/ %R 10.22436/jnsa.010.01.04 %G en %F JNSA_2017_10_1_a3
Han, Sang-Eon. Almost fixed point property for digital spaces associated with Marcus-Wyse topological spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 1, p. 34-47. doi : 10.22436/jnsa.010.01.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.04/
[1] Diskrete Räume, Mat. Sb., Volume 2 (1937), pp. 501-518
[2] A classical construction for the digital fundamental group, J. Math. Imaging Vision, Volume 10 (1999), pp. 51-62 | Zbl | DOI
[3] The Lefschetz fixed point theorem, Scott, Foresman and Co., , Glenview, Ill.-London, 1971
[4] Some remarks concerning semi-\(T_{1/2}\) spaces , Filomat, Volume 28 (2014), pp. 21-25 | DOI | Zbl
[5] Lefschetz fixed point theorem for digital images, Fixed Point Theorey Appl., Volume 2013 (2013 ), pp. 1-13 | DOI
[6] On the classication of the digital images up to a digital homotopy equivalence, J. Comput. Commun. Res., Volume 10 (2000), pp. 194-207
[7] Non-product property of the digital fundamental group, Inform. Sci., Volume 171 (2005), pp. 73-91 | DOI
[8] On the simplicial complex stemmed from a digital graph, Honam Math. J., Volume 27 (2005), pp. 115-129 | Zbl
[9] Equivalent \((k_0, k_1)\)-covering and generalized digital lifting, Inform. Sci., Volume 178 (2008), pp. 550-561 | DOI | Zbl
[10] The k-homotopic thinning and a torus-like digital image in \(Z^n\), J. Math. Imaging Vision, Volume 31 (2008), pp. 1-16 | DOI
[11] KD-\((k_0, k_1)\)-homotopy equivalence and its applications, J. Korean Math. Soc., Volume 47 (2010), pp. 1031-1054 | Zbl | DOI
[12] Fixed point theorems for digital images, Honam Math. J., Volume 37 (2015), pp. 595-608 | DOI | Zbl
[13] Generalizations of continuity of maps and homeomorphisms for studying 2D digital topological spaces and their applications, Topology Appl., Volume 196 (2015), pp. 468-482 | DOI | Zbl
[14] Banach fixed point theorem from the viewpoint of digital topology, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 895-905 | Zbl
[15] Contractibility and fixed point property: the case of Khalimsky topological spaces, Fixed Point Theory Appl., Volume 2016 (2016 ), pp. 1-20 | DOI | Zbl
[16] Classification of spaces in terms of both a digitization and a Marcus Wyse topological structure, Honam Math. J., Volume 33 (2011), pp. 575-589 | DOI | Zbl
[17] Digital graph \((k_0, k_1)\)-homotopy equivalence and its applications, http://atlas-conferences. com/c/a/k/b/35.htm, , 2003
[18] Digital graph \((k_0, k_1)\)-isomorphism and its applications, http://atlas-conferences.com/c/a/ k/b/36.htm, , 2003
[19] Homotopy based on Marcus-Wyse topology and its applications, Topology Appl., Volume 201 (2016), pp. 358-371 | Zbl | DOI
[20] Oriented surfaces in digital spaces, CVGIP: Graph. Models Image Proc., Volume 55 (1993), pp. 381-396 | DOI
[21] Motion, deformation and homotopy in finite spaces, Man and CyberneticsProceedings of the IEEE International Conference on Systems, (1987), pp. 227-234
[22] Computer graphics and connected topologies on finite ordered sets, Topology Appl., Volume 36 (1990), pp. 1-17 | Zbl | DOI
[23] Topological algorithms for digital image processing, Elsevier Science, Amsterdam, 1996
[24] Topology , Amer. Math. Soc. (1930)
[25] On the fixed point formula, Ann. of Math., Volume 38 (1937), pp. 819-822 | DOI
[26] Digital topology, Amer. Math. Monthly, Volume 86 (1979), pp. 621-630
[27] Continuous functions on digital pictures, Pattern Recogn. Lett., Volume 4 (1986), pp. 177-184 | DOI
[28] Topological structuring of the digital plane, Discrete Math. Theor. Comput. Sci., Volume 15 (2013), pp. 165-176 | Zbl
[29] Solution to problem 5712, Amer. Math. Monthly, Volume 77 (1970), pp. 1-1119
Cité par Sources :