Almost fixed point property for digital spaces associated with Marcus-Wyse topological spaces
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 1, p. 34-47.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The present paper studies almost fixed point property for digital spaces whose structures are induced by Marcus-Wyse (M-, for brevity) topology. In this paper we mainly deal with spaces $X$ which are connected M-topological spaces with M-adjacency (MA-spaces or M-topological graphs for short) whose cardinalities are greater than 1. Let MAC be a category whose objects, denoted by Ob(MAC), are MA-spaces and morphisms are MA-maps between MA-spaces (for more details, see Section 3), and MTC a category of M-topological spaces as Ob(MTC) and M-continuous maps as morphisms of MTC (for more details, see Section 3). We prove that whereas any MA-space does not have the fixed point property (FPP for short) for any MA-maps, a bounded simple MA-path has the almost fixed point property (AFPP for short). Finally, we refer the topological invariant of the FPP for M-topological spaces from the viewpoint of MTC.
DOI : 10.22436/jnsa.010.01.04
Classification : 54A10, 54C05, 54C08, 54F65
Keywords: Digital topology, fixed point property, Marcus-Wyse topology, MA-map, MA-isomorphism, MA-homotopy, MA-space, MA-contractibility, M-topological graph, almost fixed point property.

Han, Sang-Eon 1

1 Department of Mathematics Education, Institute of Pure and Applied Mathematics, Chonbuk National University, 54896, Jeonju-City Jeonbuk, Republic of Korea
@article{JNSA_2017_10_1_a3,
     author = {Han, Sang-Eon},
     title = {Almost fixed point property for digital spaces associated with {Marcus-Wyse} topological spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {34-47},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2017},
     doi = {10.22436/jnsa.010.01.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.04/}
}
TY  - JOUR
AU  - Han, Sang-Eon
TI  - Almost fixed point property for digital spaces associated with Marcus-Wyse topological spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 34
EP  - 47
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.04/
DO  - 10.22436/jnsa.010.01.04
LA  - en
ID  - JNSA_2017_10_1_a3
ER  - 
%0 Journal Article
%A Han, Sang-Eon
%T Almost fixed point property for digital spaces associated with Marcus-Wyse topological spaces
%J Journal of nonlinear sciences and its applications
%D 2017
%P 34-47
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.04/
%R 10.22436/jnsa.010.01.04
%G en
%F JNSA_2017_10_1_a3
Han, Sang-Eon. Almost fixed point property for digital spaces associated with Marcus-Wyse topological spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 1, p. 34-47. doi : 10.22436/jnsa.010.01.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.04/

[1] Alexandroff, P. Diskrete Räume, Mat. Sb., Volume 2 (1937), pp. 501-518

[2] L. Boxer A classical construction for the digital fundamental group, J. Math. Imaging Vision, Volume 10 (1999), pp. 51-62 | Zbl | DOI

[3] Brown, R. F. The Lefschetz fixed point theorem, Scott, Foresman and Co., , Glenview, Ill.-London, 1971

[4] Chatyrko, V. A.; Han, S.-E.; Hattori, Y. Some remarks concerning semi-\(T_{1/2}\) spaces , Filomat, Volume 28 (2014), pp. 21-25 | DOI | Zbl

[5] Ege, O.; Karaca, I. Lefschetz fixed point theorem for digital images, Fixed Point Theorey Appl., Volume 2013 (2013 ), pp. 1-13 | DOI

[6] Han, S.-E. On the classication of the digital images up to a digital homotopy equivalence, J. Comput. Commun. Res., Volume 10 (2000), pp. 194-207

[7] Han, S.-E. Non-product property of the digital fundamental group, Inform. Sci., Volume 171 (2005), pp. 73-91 | DOI

[8] Han, S.-E. On the simplicial complex stemmed from a digital graph, Honam Math. J., Volume 27 (2005), pp. 115-129 | Zbl

[9] Han, S.-E. Equivalent \((k_0, k_1)\)-covering and generalized digital lifting, Inform. Sci., Volume 178 (2008), pp. 550-561 | DOI | Zbl

[10] Han, S.-E. The k-homotopic thinning and a torus-like digital image in \(Z^n\), J. Math. Imaging Vision, Volume 31 (2008), pp. 1-16 | DOI

[11] Han, S.-E. KD-\((k_0, k_1)\)-homotopy equivalence and its applications, J. Korean Math. Soc., Volume 47 (2010), pp. 1031-1054 | Zbl | DOI

[12] Han, S.-E. Fixed point theorems for digital images, Honam Math. J., Volume 37 (2015), pp. 595-608 | DOI | Zbl

[13] Han, S.-E. Generalizations of continuity of maps and homeomorphisms for studying 2D digital topological spaces and their applications, Topology Appl., Volume 196 (2015), pp. 468-482 | DOI | Zbl

[14] Han, S.-E. Banach fixed point theorem from the viewpoint of digital topology, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 895-905 | Zbl

[15] Han, S.-E. Contractibility and fixed point property: the case of Khalimsky topological spaces, Fixed Point Theory Appl., Volume 2016 (2016 ), pp. 1-20 | DOI | Zbl

[16] Han, S.-E.; Chun, W.-J. Classification of spaces in terms of both a digitization and a Marcus Wyse topological structure, Honam Math. J., Volume 33 (2011), pp. 575-589 | DOI | Zbl

[17] Han, S.-E.; Park, B. G. Digital graph \((k_0, k_1)\)-homotopy equivalence and its applications, http://atlas-conferences. com/c/a/k/b/35.htm, , 2003

[18] Han, S.-E.; Park, B. G. Digital graph \((k_0, k_1)\)-isomorphism and its applications, http://atlas-conferences.com/c/a/ k/b/36.htm, , 2003

[19] Han, S.-E.; Yao, W. Homotopy based on Marcus-Wyse topology and its applications, Topology Appl., Volume 201 (2016), pp. 358-371 | Zbl | DOI

[20] Herman, G. T. Oriented surfaces in digital spaces, CVGIP: Graph. Models Image Proc., Volume 55 (1993), pp. 381-396 | DOI

[21] E. Khalimsky Motion, deformation and homotopy in finite spaces, Man and CyberneticsProceedings of the IEEE International Conference on Systems, (1987), pp. 227-234

[22] Khalimsky, E.; Kopperman, R.; Meyer, P. R. Computer graphics and connected topologies on finite ordered sets, Topology Appl., Volume 36 (1990), pp. 1-17 | Zbl | DOI

[23] Kong, T. Y.; Rosenfeld, A. Topological algorithms for digital image processing, Elsevier Science, Amsterdam, 1996

[24] Lefschetz, S. Topology , Amer. Math. Soc. (1930)

[25] S. Lefschetz On the fixed point formula, Ann. of Math., Volume 38 (1937), pp. 819-822 | DOI

[26] A. Rosenfeld Digital topology, Amer. Math. Monthly, Volume 86 (1979), pp. 621-630

[27] Rosenfeld, A. Continuous functions on digital pictures, Pattern Recogn. Lett., Volume 4 (1986), pp. 177-184 | DOI

[28] Šlapal, J. Topological structuring of the digital plane, Discrete Math. Theor. Comput. Sci., Volume 15 (2013), pp. 165-176 | Zbl

[29] Wyse, F.; Marcus, D. Solution to problem 5712, Amer. Math. Monthly, Volume 77 (1970), pp. 1-1119

Cité par Sources :