On order-Lipschitz mappings in Banach spaces without normalities of involving cones
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 1, p. 27-33.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We prove a new fixed point theorem of order-Lipschitz mappings in Banach spaces without assumption of normalities of the involving cones, which presents a positive answer to a problem raised in [S. Jiang, Z. Li, Fixed Point Theory Appl., 2016 (2016), 10 pages] and improves the corresponding results of Krasnoselskii and Zabreiko’s and Zhang and Sun’s since the normality of the involving cone is removed.
DOI : 10.22436/jnsa.010.01.03
Classification : 06A07, 47H10
Keywords: Fixed point theorem, order-Lipschitz mapping, Picard-completeness, non-normal cone.

Li, Zhilong 1 ; Jiang, Shujun 2 ; Lazovic, Rade 3

1 School of Statistics, Jiangxi University of Finance and Economics, Nanchang, 330013, China;Research Center of Applied Statistics, Jiangxi University of Finance and Economics, Nanchang, 330013, China
2 Department of Mathematics, Jiangxi University of Finance and Economics, Nanchang, 330013, China
3 Faculty of Organizational Sciences, University of Belgrade, Jove Ilica 154, Belgrade, Serbia
@article{JNSA_2017_10_1_a2,
     author = {Li, Zhilong and Jiang, Shujun and Lazovic, Rade},
     title = {On {order-Lipschitz} mappings in {Banach} spaces without normalities of involving cones},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {27-33},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2017},
     doi = {10.22436/jnsa.010.01.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.03/}
}
TY  - JOUR
AU  - Li, Zhilong
AU  - Jiang, Shujun
AU  - Lazovic, Rade
TI  - On order-Lipschitz mappings in Banach spaces without normalities of involving cones
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 27
EP  - 33
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.03/
DO  - 10.22436/jnsa.010.01.03
LA  - en
ID  - JNSA_2017_10_1_a2
ER  - 
%0 Journal Article
%A Li, Zhilong
%A Jiang, Shujun
%A Lazovic, Rade
%T On order-Lipschitz mappings in Banach spaces without normalities of involving cones
%J Journal of nonlinear sciences and its applications
%D 2017
%P 27-33
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.03/
%R 10.22436/jnsa.010.01.03
%G en
%F JNSA_2017_10_1_a2
Li, Zhilong; Jiang, Shujun; Lazovic, Rade. On order-Lipschitz mappings in Banach spaces without normalities of involving cones. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 1, p. 27-33. doi : 10.22436/jnsa.010.01.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.03/

[1] Deimling, K. Nonlinear functional analysis, Springer-Verlag, Berlin, 1985

[2] Jiang, S.; Li, Z. Extensions of Banach contraction principle to partial cone metric spaces over a non-normal solid cone, Fixed Point Theory Appl., Volume 2013 (2013 ), pp. 1-9 | DOI | Zbl

[3] Jiang, S.; Li, Z. Fixed point theorems of order-Lipschitz mappings in Banach algebras, Fixed Point Theory Appl., Volume 2016 (2016 ), pp. 1-10 | DOI | Zbl

[4] Krasnosel’skiĭ, M. A.; Zabreĭko, P. P. Geometrical methods of nonlinear analysis, Springer-Verlag, Berlin, 1984 | DOI

[5] Li, Z.; Jiang, S. Common fixed point theorems of contractions in partial cone metric spaces over nonnormal cones, Abstr. Appl. Anal., Volume 2014 (2014 ), pp. 1-8

[6] Sun, J.-X. Iterative solutions of nonlinear operator, (Chinese) J. Engin. Math., Volume 6 (1989), pp. 12-17

[7] Zhang, X. Y.; Sun, J. X. Existence and uniqueness of solutions for a class of nonlinear operator equations and its applications, (Chinese) Acta Math. Scientia, Volume 25 (2005), pp. 846-851

Cité par Sources :