Properties and application of smooth function germs of orbit tangent space
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 12, p. 6041-6047.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The finite determinacy of smooth function germ is the key in approximating the nonlinear function with infinite terms by its finite terms. In this paper, we discuss the inclusion relations with a new equivalent form for function germs in orbit tangent spaces, and get an improved form of the finite $k$-determinacy of smooth function germ. As an application, the methods in judging the right equivalency of Whitney function family with codimension 8 are presented.
DOI : 10.22436/jnsa.009.12.11
Classification : 58C25, 58K40, 32S30
Keywords: Diffeomorphism, function germ, Jacobian ideal, \(\mathcal{R}\)-equivalence.

Gan, Wenliang 1 ; Pei, Donghe 1 ; Li, Qiang 2

1 School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, P. R. China
2 School of Science, Qiqihar University, Qiqihar 161006, P. R. China
@article{JNSA_2016_9_12_a10,
     author = {Gan, Wenliang and Pei, Donghe and Li, Qiang},
     title = {Properties and application of smooth function germs of orbit tangent space},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {6041-6047},
     publisher = {mathdoc},
     volume = {9},
     number = {12},
     year = {2016},
     doi = {10.22436/jnsa.009.12.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.11/}
}
TY  - JOUR
AU  - Gan, Wenliang
AU  - Pei, Donghe
AU  - Li, Qiang
TI  - Properties and application of smooth function germs of orbit tangent space
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 6041
EP  - 6047
VL  - 9
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.11/
DO  - 10.22436/jnsa.009.12.11
LA  - en
ID  - JNSA_2016_9_12_a10
ER  - 
%0 Journal Article
%A Gan, Wenliang
%A Pei, Donghe
%A Li, Qiang
%T Properties and application of smooth function germs of orbit tangent space
%J Journal of nonlinear sciences and its applications
%D 2016
%P 6041-6047
%V 9
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.11/
%R 10.22436/jnsa.009.12.11
%G en
%F JNSA_2016_9_12_a10
Gan, Wenliang; Pei, Donghe; Li, Qiang. Properties and application of smooth function germs of orbit tangent space. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 12, p. 6041-6047. doi : 10.22436/jnsa.009.12.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.11/

[1] Kushner, L.; Leme, B. Terra Finite relative determination and relative stability, Pacific J. Math., Volume 192 (2000), pp. 315-328

[2] Li, Y.; He, W. Versal unfolding of equivariant bifurcation problems in more general case under two equivalent groups, Acta Math. Sci. Ser. B Engl. Ed., Volume 28 (2008), pp. 915-923

[3] Martinet, J. Singularities of smooth functions and maps, Cambridge University Press, Cambridge-New York, 1982

[4] Mather, J. N. Stability of \(C^\infty\) mapping, III: Finitely determined map germs, Publ. Math I. H. E. S., Volume 35 (1969), pp. 127-156

[5] Shi, C.; Pei, D. Weak finite determinacy of relative map germs, Chin. Ann. Math. Ser. B, Volume 35 (2014), pp. 991-1000

[6] Sun, B.; Wilson, L. C. Determinacy of smooth germs with real isolated line singularities, Proc. Amer. Math. Soc., Volume 129 (2001), pp. 2789-2797

[7] Wall, C. T. C. Determinacy of smooth map-germs, Bull. London Math. Soc., Volume 13 (1981), pp. 481-539

[8] Zou, J. C. Finite determination and universal unfoldings of bifurcation problems, Acta Math. Sinica (N. S.), Volume 14 (1998), pp. 663-674

Cité par Sources :