In this paper, the Brunn-Minkowski type inequalities for $L_p$ Blaschke-Minkowski homomorphisms and $L_p$ radial Minkowski homomorphisms are established.
Keywords: Brunn-Minkowski inequality, \(L_p\) Blaschke-Minkowski homomorphisms
Chen, Feixiang 1 ; Leng, Gangsong 2
@article{10_22436_jnsa_009_12_10,
author = {Chen, Feixiang and Leng, Gangsong},
title = {Brunn-Minkowski type inequalities for {\(L_p\)} {Blaschke-} {Minkowski} homomorphisms},
journal = {Journal of nonlinear sciences and its applications},
pages = {6034-6040},
year = {2016},
volume = {9},
number = {12},
doi = {10.22436/jnsa.009.12.10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.10/}
}
TY - JOUR AU - Chen, Feixiang AU - Leng, Gangsong TI - Brunn-Minkowski type inequalities for \(L_p\) Blaschke- Minkowski homomorphisms JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 6034 EP - 6040 VL - 9 IS - 12 UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.10/ DO - 10.22436/jnsa.009.12.10 LA - en ID - 10_22436_jnsa_009_12_10 ER -
%0 Journal Article %A Chen, Feixiang %A Leng, Gangsong %T Brunn-Minkowski type inequalities for \(L_p\) Blaschke- Minkowski homomorphisms %J Journal of nonlinear sciences and its applications %D 2016 %P 6034-6040 %V 9 %N 12 %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.10/ %R 10.22436/jnsa.009.12.10 %G en %F 10_22436_jnsa_009_12_10
Chen, Feixiang; Leng, Gangsong. Brunn-Minkowski type inequalities for \(L_p\) Blaschke- Minkowski homomorphisms. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 12, p. 6034-6040. doi: 10.22436/jnsa.009.12.10
[1] Projection bodies in complex vector spaces, Adv. Math., Volume 227 (2011), pp. 830-846
[2] Aleksandrov-Fenchel inequalities for unitary valuations of degree 2 and 3, Calc. Var. Partial Differential Equations, Volume 54 (2015), pp. 1767-1791
[3] Harmonic analysis of translation invariant valuations, Geom. Funct. Anal., Volume 21 (2011), pp. 751-773
[4] Log-concavity properties of Minkowski valuations, arXiv, Volume 2014 (2014), pp. 1-44
[5] The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.), Volume 39 (2002), pp. 355-405
[6] Geometric tomography, Second edition, Encyclopedia of Mathematics and its Applications, Cambridge University Press, New York, 2006
[7] A Brunn-Minkowski inequality for the integer lattice, Trans. Amer. Math. Soc., Volume 353 (2001), pp. 3995-4024
[8] Operations between sets in geometry, J. Eur. Math. Soc. (JEMS), Volume 15 (2013), pp. 2297-2352
[9] A characterization of Blaschke addition, Adv. Math., Volume 254 (2014), pp. 396-418
[10] \(L_p\) intersection bodies, Adv. Math., Volume 217 (2008), pp. 2599-2624
[11] On \(L_p\)-Brunn-Minkowski type inequalities of convex bodies, Bol. Soc. Mat. Mexicana, Volume 13 (2007), pp. 167-176
[12] Projection bodies and valuations, Adv. Math., Volume 172 (2002), pp. 158-168
[13] Intersection bodies and valuations, Amer. J. Math., Volume 128 (2006), pp. 1409-1428
[14] Inequalities for mixed projection bodies, Trans. Amer. Math. Soc., Volume 339 (1993), pp. 901-916
[15] The Brunn-Minkowski-Firey theory, I, Mixed volumes and the Minkowski problem, J. Differential Geom., Volume 38 (1993), pp. 131-150
[16] The Brunn-Minkowski inequality for multiplictities, Invent. Math., Volume 125 (1996), pp. 405-411
[17] The Steiner formula for Minkowski valuations, Adv. Math., Volume 230 (2012), pp. 978-994
[18] Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1993
[19] Volume inequalities and additive maps of convex bodies, Mathematika, Volume 53 (2006), pp. 211-234
[20] Valuations and Busemann-Petty type problems, Adv. Math., Volume 219 (2008), pp. 344-368
[21] Crofton measures and Minkowski valuations, Duke Math. J., Volume 154 (2010), pp. 1-30
[22] \(L_p\) Blaschke-Minkowski homomorphisms, J. Inequal. Appl., Volume 2013 (2013), pp. 1-14
[23] \(L_p\) Brunn-Minkowski type inequalities for Blaschke-Minkowski homomorphisms, Geom. Dedicata, Volume 164 (2013), pp. 273-285
[24] \(L_p\) radial Minkowski homomorphisms, Taiwanese J. Math., Volume 15 (2011), pp. 1183-1199
[25] GL(n) equivariant Minkowski valuations, Indiana Univ. Math. J., Volume 60 (2011), pp. 1655-1672
Cité par Sources :