Brunn-Minkowski type inequalities for $L_p$ Blaschke- Minkowski homomorphisms :
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 12, p. 6034-6040 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

In this paper, the Brunn-Minkowski type inequalities for $L_p$ Blaschke-Minkowski homomorphisms and $L_p$ radial Minkowski homomorphisms are established.

DOI : 10.22436/jnsa.009.12.10
Classification : 52A20, 52A40
Keywords: Brunn-Minkowski inequality, \(L_p\) Blaschke-Minkowski homomorphisms

Chen, Feixiang 1 ; Leng, Gangsong 2

1 Department of Mathematics, Shanghai University, Shanghai 200444, China;School of Mathematics and Statistics, Chongqing Three Gorges University, Wanzhou 404000, China
2 Department of Mathematics, Shanghai University, Shanghai 200444, China
@article{10_22436_jnsa_009_12_10,
     author = {Chen, Feixiang and Leng, Gangsong},
     title = {Brunn-Minkowski type inequalities for {\(L_p\)}  {Blaschke-} {Minkowski} homomorphisms},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {6034-6040},
     year = {2016},
     volume = {9},
     number = {12},
     doi = {10.22436/jnsa.009.12.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.10/}
}
TY  - JOUR
AU  - Chen, Feixiang
AU  - Leng, Gangsong
TI  - Brunn-Minkowski type inequalities for \(L_p\)  Blaschke- Minkowski homomorphisms
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 6034
EP  - 6040
VL  - 9
IS  - 12
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.10/
DO  - 10.22436/jnsa.009.12.10
LA  - en
ID  - 10_22436_jnsa_009_12_10
ER  - 
%0 Journal Article
%A Chen, Feixiang
%A Leng, Gangsong
%T Brunn-Minkowski type inequalities for \(L_p\)  Blaschke- Minkowski homomorphisms
%J Journal of nonlinear sciences and its applications
%D 2016
%P 6034-6040
%V 9
%N 12
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.10/
%R 10.22436/jnsa.009.12.10
%G en
%F 10_22436_jnsa_009_12_10
Chen, Feixiang; Leng, Gangsong. Brunn-Minkowski type inequalities for \(L_p\)  Blaschke- Minkowski homomorphisms. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 12, p. 6034-6040. doi: 10.22436/jnsa.009.12.10

[1] Abardia, J.; Bernig, A. Projection bodies in complex vector spaces, Adv. Math., Volume 227 (2011), pp. 830-846

[2] Abardia, J.; Wannerer, T. Aleksandrov-Fenchel inequalities for unitary valuations of degree 2 and 3, Calc. Var. Partial Differential Equations, Volume 54 (2015), pp. 1767-1791

[3] Alesker, S.; Bernig, A.; Schuster, F. E. Harmonic analysis of translation invariant valuations, Geom. Funct. Anal., Volume 21 (2011), pp. 751-773

[4] Berg, A.; Parapatits, L.; Schuster, F. E.; Weberndorfer, M. Log-concavity properties of Minkowski valuations, arXiv, Volume 2014 (2014), pp. 1-44

[5] Gardner, R. J. The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.), Volume 39 (2002), pp. 355-405

[6] Gardner, R. J. Geometric tomography, Second edition, Encyclopedia of Mathematics and its Applications, Cambridge University Press, New York, 2006

[7] Gardner, R. J.; Gronchi, P. A Brunn-Minkowski inequality for the integer lattice, Trans. Amer. Math. Soc., Volume 353 (2001), pp. 3995-4024

[8] Gardner, R. J.; Hug, D.; Weil, W. Operations between sets in geometry, J. Eur. Math. Soc. (JEMS), Volume 15 (2013), pp. 2297-2352

[9] Gardner, R. J.; Parapatits, L.; Schuster, F. E. A characterization of Blaschke addition, Adv. Math., Volume 254 (2014), pp. 396-418

[10] Haberl, C. \(L_p\) intersection bodies, Adv. Math., Volume 217 (2008), pp. 2599-2624

[11] Lu, F.-H.; Leng, G.-S. On \(L_p\)-Brunn-Minkowski type inequalities of convex bodies, Bol. Soc. Mat. Mexicana, Volume 13 (2007), pp. 167-176

[12] Ludwig, M. Projection bodies and valuations, Adv. Math., Volume 172 (2002), pp. 158-168

[13] Ludwig, M. Intersection bodies and valuations, Amer. J. Math., Volume 128 (2006), pp. 1409-1428

[14] Lutwak, E. Inequalities for mixed projection bodies, Trans. Amer. Math. Soc., Volume 339 (1993), pp. 901-916

[15] Lutwak, E. The Brunn-Minkowski-Firey theory, I, Mixed volumes and the Minkowski problem, J. Differential Geom., Volume 38 (1993), pp. 131-150

[16] Osserman, R. The Brunn-Minkowski inequality for multiplictities, Invent. Math., Volume 125 (1996), pp. 405-411

[17] Parapatits, L.; Schuster, F. E. The Steiner formula for Minkowski valuations, Adv. Math., Volume 230 (2012), pp. 978-994

[18] Schneider, R. Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1993

[19] Schuster, F. E. Volume inequalities and additive maps of convex bodies, Mathematika, Volume 53 (2006), pp. 211-234

[20] Schuster, F. E. Valuations and Busemann-Petty type problems, Adv. Math., Volume 219 (2008), pp. 344-368

[21] Schuster, F. E. Crofton measures and Minkowski valuations, Duke Math. J., Volume 154 (2010), pp. 1-30

[22] Wang, W. \(L_p\) Blaschke-Minkowski homomorphisms, J. Inequal. Appl., Volume 2013 (2013), pp. 1-14

[23] Wang, W. \(L_p\) Brunn-Minkowski type inequalities for Blaschke-Minkowski homomorphisms, Geom. Dedicata, Volume 164 (2013), pp. 273-285

[24] Wang, W.; Liu, L.-J.; He, B.-W. \(L_p\) radial Minkowski homomorphisms, Taiwanese J. Math., Volume 15 (2011), pp. 1183-1199

[25] Wannerer, T. GL(n) equivariant Minkowski valuations, Indiana Univ. Math. J., Volume 60 (2011), pp. 1655-1672

Cité par Sources :