Voir la notice de l'article provenant de la source International Scientific Research Publications
Ullah, Malik Zaka 1 ; Ahmad, Fayyaz 2 ; Alshomrani, Ali Saleh 3 ; Alzahrani, A. K. 3 ; Alghamdi, Metib Said 4 ; Ahmad, Shamshad 5 ; Ahmad, Shahid 6
@article{JNSA_2016_9_12_a8, author = {Ullah, Malik Zaka and Ahmad, Fayyaz and Alshomrani, Ali Saleh and Alzahrani, A. K. and Alghamdi, Metib Said and Ahmad, Shamshad and Ahmad, Shahid}, title = {Frozen jacobian iterative method for solving systems of nonlinear equations application to nonlinear {IVPs} and {BVPs}}, journal = {Journal of nonlinear sciences and its applications}, pages = {6021-6033}, publisher = {mathdoc}, volume = {9}, number = {12}, year = {2016}, doi = {10.22436/jnsa.009.12.09}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.09/} }
TY - JOUR AU - Ullah, Malik Zaka AU - Ahmad, Fayyaz AU - Alshomrani, Ali Saleh AU - Alzahrani, A. K. AU - Alghamdi, Metib Said AU - Ahmad, Shamshad AU - Ahmad, Shahid TI - Frozen jacobian iterative method for solving systems of nonlinear equations application to nonlinear IVPs and BVPs JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 6021 EP - 6033 VL - 9 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.09/ DO - 10.22436/jnsa.009.12.09 LA - en ID - JNSA_2016_9_12_a8 ER -
%0 Journal Article %A Ullah, Malik Zaka %A Ahmad, Fayyaz %A Alshomrani, Ali Saleh %A Alzahrani, A. K. %A Alghamdi, Metib Said %A Ahmad, Shamshad %A Ahmad, Shahid %T Frozen jacobian iterative method for solving systems of nonlinear equations application to nonlinear IVPs and BVPs %J Journal of nonlinear sciences and its applications %D 2016 %P 6021-6033 %V 9 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.09/ %R 10.22436/jnsa.009.12.09 %G en %F JNSA_2016_9_12_a8
Ullah, Malik Zaka; Ahmad, Fayyaz; Alshomrani, Ali Saleh; Alzahrani, A. K.; Alghamdi, Metib Said; Ahmad, Shamshad; Ahmad, Shahid. Frozen jacobian iterative method for solving systems of nonlinear equations application to nonlinear IVPs and BVPs. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 12, p. 6021-6033. doi : 10.22436/jnsa.009.12.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.09/
[1] A parameterized multi-step Newton method for solving systems of nonlinear equations, Numer. Algorithms, Volume 71 (2016), pp. 631-653
[2] Higher order multi-step Jarratt-like method for solving systems of nonlinear equations: application to PDEs and ODEs, Comput. Math. Appl., Volume 70 (2015), pp. 624-636
[3] An efficient higher-order quasilinearization method for solving nonlinear BVPs, J. Appl. Math., Volume 2013 (2013), pp. 1-11
[4] An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system, Appl. Math. Comput., Volume 247 (2014), pp. 30-46
[5] Three-step iterative methods with eighth-order convergence for solving nonlinear equations, J. Comput. Appl. Math., Volume 225 (2009), pp. 105-112
[6] A modified Newton-Jarratt's composition, Numer. Algorithms, Volume 55 (2010), pp. 87-99
[7] On the global convergence of Halley's iteration formula, Numer. Math., Volume 24 (1975), pp. 133-135
[8] The spectral collocation method with three different bases for solving a nonlinear partial differential equation arising in modeling of nonlinear waves, Math. Comput. Modelling, Volume 53 (2011), pp. 1865-1877
[9] A multi-parameter family of three-step eighth-order iterative methods locating a simple root, Appl. Math. Comput., Volume 215 (2010), pp. 3375-3382
[10] A new exact and easy method of finding the roots of equations generally and without any previous reduction, Philos. Trans. Roy. Soc. London, Volume 18 (1964), pp. 136-148
[11] Optimal order of one-point and multipoint iteration, J. Assoc. Comput. Mach., Volume 21 (1974), pp. 643-651
[12] On a new method for computing the numerical solution of systems of nonlinear equations, J. Appl. Math., Volume 2012 (2012), pp. 1-15
[13] On a new class of optimal eighth-order derivative-free methods, Acta Univ. Sapientiae Math., Volume 3 (2011), pp. 169-180
[14] A multi-step class of iterative methods for nonlinear systems, Optim. Lett., Volume 8 (2014), pp. 1001-1015
[15] An efficient Legendre pseudospectral method for solving nonlinear quasi bang-bang optimal control problems, J. Appl. Math. Stat. Inform., Volume 8 (2012), pp. 73-84
[16] Four-point optimal sixteenth-order iterative method for solving nonlinear equations, J. Appl. Math., Volume 2013 (2013), pp. 1-5
[17] An efficient multi-step iterative method for computing the numerical solution of systems of nonlinear equations associated with ODEs, Appl. Math. Comput., Volume 250 (2015), pp. 249-259
[18] Numerical solution of nonlinear systems by a general class of iterative methods with application to nonlinear PDEs, Numer. Algorithms, Volume 67 (2014), pp. 223-242
[19] Modified Ostrowski's method with eighth-order convergence and high efficiency index, Appl. Math. Lett., Volume 23 (2010), pp. 549-554
Cité par Sources :