On properties of solutions to the improved modified Boussinesq equation
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 12, p. 6004-6020.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we investigate the Cauchy problem for the generalized IBq equation with damping in one dimensional space. When $\sigma = 1$, the nonlinear approximation of the global solutions is established under small condition on the initial value. Moreover, we show that as time tends to infinity, the solution is asymptotic to the superposition of nonlinear diffusion waves which are given explicitly in terms of the selfsimilar solution of the viscous Burgers equation. When $\sigma\geq 2$, we prove that our global solution converges to the superposition of diffusion waves which are given explicitly in terms of the solution of linear parabolic equation.
DOI : 10.22436/jnsa.009.12.08
Classification : 35L30, 35L75
Keywords: IMBq equation with damping, large time behavior, diffusion waves.

Wang, Yuzhu 1 ; Wang, Yinxia 1

1 School of Mathematics and Information Sciences, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
@article{JNSA_2016_9_12_a7,
     author = {Wang, Yuzhu and Wang, Yinxia},
     title = {On properties of solutions to the improved modified {Boussinesq} equation},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {6004-6020},
     publisher = {mathdoc},
     volume = {9},
     number = {12},
     year = {2016},
     doi = {10.22436/jnsa.009.12.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.08/}
}
TY  - JOUR
AU  - Wang, Yuzhu
AU  - Wang, Yinxia
TI  - On properties of solutions to the improved modified Boussinesq equation
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 6004
EP  - 6020
VL  - 9
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.08/
DO  - 10.22436/jnsa.009.12.08
LA  - en
ID  - JNSA_2016_9_12_a7
ER  - 
%0 Journal Article
%A Wang, Yuzhu
%A Wang, Yinxia
%T On properties of solutions to the improved modified Boussinesq equation
%J Journal of nonlinear sciences and its applications
%D 2016
%P 6004-6020
%V 9
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.08/
%R 10.22436/jnsa.009.12.08
%G en
%F JNSA_2016_9_12_a7
Wang, Yuzhu; Wang, Yinxia. On properties of solutions to the improved modified Boussinesq equation. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 12, p. 6004-6020. doi : 10.22436/jnsa.009.12.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.08/

[1] Arévalo, E.; Gaididei, Y.; Mertens, F. G. Soliton dynamics in damped and forced Boussinesq equations, Eur. Phys. J. B, Volume 27 (2002), pp. 63-74

[2] Boussinesq, J. Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, (French) [Theory of waves and vortices propagating along a horizontal rectanglar channel, communicating to the liquid in the channel generally similar velocities of the bottom surface], J. Math. Pures Appl., Volume 17 (1872), pp. 55-108

[3] Boussinesq, J. Essai sur la théorie des eaux courantes, memo presented at the Acadmic des Sciences Inst. France (series), Volume 23 (1877), pp. 1-680

[4] Cho, Y. G.; Ozawa, T. On small amplitude solutions to the generalized Boussinesq equations, Discrete Contin. Dyn. Syst., Volume 17 (2007), pp. 691-711

[5] Kato, M. Large time behavior of solutions to the generalized Burgers equations, Osaka J. Math., Volume 44 (2007), pp. 923-943

[6] Kato, M.; Wang, Y.-Z.; Kawashima, S. Asymptotic behavior of solutions to the generalized cubic double dispersion equation in one space dimension, Kinet. Relat. Models, Volume 6 (2013), pp. 969-987

[7] Kawashima, S. Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Roy. Soc. Edinburgh Sect. A, Volume 106 (1987), pp. 169-194

[8] Kawashima, S.; Wang, Y.-Z. Global existence and asymptotic behavior of solutions to the generalized cubic double dispersion equation, Anal. Appl. (Singap.), Volume 13 (2015), pp. 233-254

[9] Li, T. T.; Chen, Y. M. Nonlinear evolution equations (Chinese), Science Press, , 1989

[10] Liu, T.-P. Hyperbolic and viscous conservation laws, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2000

[11] Makhankov, V. G. Dynamics of classical solitons (in nonintegrable systems), Phys. Rep., Volume 35 (1978), pp. 1-128

[12] Ogundiran, M. O. Continuous selections of solution sets of quantum stochastic evolution inclusions, J. Nonlinear Funct. Anal., Volume 2014 (2014), pp. 1-14

[13] Polat, N. Existence and blow up of solution of Cauchy problem of the generalized damped multidimensional improved modified Boussinesq equation, Z. Naturforsch A, Volume 63 (2008), pp. 543-552

[14] Rosenau, P. Dynamics of nonlinear mass-spring chains near the continuum limit, Phys. Lett. A, Volume 118 (1986), pp. 222-227

[15] Rosenau, P. Dynamics of dense lattices, Phys. Rev. B, Volume 36 (1987), pp. 5868-5876

[16] Wang, Y. X. Existence and asymptotic behavior of solutions to the generalized damped Boussinesq equation, Electron. J. Differential Equations, Volume 2012 (2012), pp. 1-11

[17] Wang, Y. X. Asymptotic decay estimate of solutions to the generalized damped \(B_q\) equation, J. Inequal. Appl., Volume 2013 (2013), pp. 1-12

[18] Wang, Y. X. On the Cauchy problem for one dimension generalized Boussinesq equation, Internat. J. Math., Volume 26 (2015), pp. 1-22

[19] Wang, S. B.; Chen, G. W. Small amplitude solutions of the generalized IMBq equation, J. Math. Anal. Appl., Volume 274 (2002), pp. 846-866

[20] Wang, S. B.; Chen, G. W. The Cauchy problem for the generalized IMBq equation in \(W_{s;p}(R^n)\), J. Math. Anal. Appl., Volume 266 (2002), pp. 38-54

[21] Wang, Y.-Z.; Chen, S. Asymptotic profile of solutions to the double dispersion equation, Nonlinear Anal., Volume 134 (2016), pp. 236-254

[22] Wang, Y.-Z.; Wang, K. Y. Decay estimate of solutions to the sixth order damped Boussinesq equation, Appl. Math. Comput., Volume 239 (2014), pp. 171-179

[23] B.Wang, S.; Xu, H. Y. On the asymptotic behavior of solution for the generalized IBq equation with hydrodynamical damped term, J. Differential Equations, Volume 252 (2012), pp. 4243-4258

[24] Zhang, Y. Z.; Li, P. F. Decay estimates of solutions to the IBq equation, Bulletin of the Iranian Mathematical Society ((to appear))

[25] Zheng, S. M. Nonlinear evolution equations, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, 2004

Cité par Sources :