3-variable Jensen $\rho$-functional inequalities and equations
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 12, p. 5995-6003.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduce and investigate Jensen $\rho$-functional inequalities associated with the following Jensen functional equations
$f(x + y + z) + f(x + y - z) - 2f(x) - 2f(y) = 0,\\ f(x + y + z) - f(x - y - z) - 2f(y) - 2f(z) = 0.$
We prove the Hyers-Ulam-Rassias stability of the Jensen $\rho$-functional inequalities in complex Banach spaces and prove the Hyers-Ulam-Rassias stability of the Jensen $\rho$-functional equations associated with the $\rho$- functional inequalities in complex Banach spaces.
DOI : 10.22436/jnsa.009.12.07
Classification : 39B62, 39B52, 39B82
Keywords: Jensen functional inequalities, Hyers-Ulam-Rassias stability, complex Banach spaces.

Lu, Gang 1 ; Liu, Qi 1 ; Jin, Yuanfeng 2 ; Xie, Jun 1

1 Department of Mathematics, School of Science, Shenyang University of Technology, Shenyang 110870, P. R. China
2 Department of Mathematics, Yanbian University, Yanji 133001, P. R. China
@article{JNSA_2016_9_12_a6,
     author = {Lu, Gang and Liu, Qi and Jin, Yuanfeng and Xie, Jun},
     title = {3-variable {Jensen} \(\rho\)-functional inequalities and equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5995-6003},
     publisher = {mathdoc},
     volume = {9},
     number = {12},
     year = {2016},
     doi = {10.22436/jnsa.009.12.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.07/}
}
TY  - JOUR
AU  - Lu, Gang
AU  - Liu, Qi
AU  - Jin, Yuanfeng
AU  - Xie, Jun
TI  - 3-variable Jensen \(\rho\)-functional inequalities and equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5995
EP  - 6003
VL  - 9
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.07/
DO  - 10.22436/jnsa.009.12.07
LA  - en
ID  - JNSA_2016_9_12_a6
ER  - 
%0 Journal Article
%A Lu, Gang
%A Liu, Qi
%A Jin, Yuanfeng
%A Xie, Jun
%T 3-variable Jensen \(\rho\)-functional inequalities and equations
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5995-6003
%V 9
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.07/
%R 10.22436/jnsa.009.12.07
%G en
%F JNSA_2016_9_12_a6
Lu, Gang; Liu, Qi; Jin, Yuanfeng; Xie, Jun. 3-variable Jensen \(\rho\)-functional inequalities and equations. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 12, p. 5995-6003. doi : 10.22436/jnsa.009.12.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.07/

[1] Aoki, T. On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66

[2] Aczél, J.; Dhombres, J. Functional equations in several variables, With applications to mathematics, information theory and to the natural and social sciences, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1989

[3] Cădariu, L.; Radu, V. Fixed points and the stability of Jensen's functional equation, JIPAM. J. Inequal. Pure Appl. Math., Volume 4 (2003), pp. 1-7

[4] Chang, I. S.; Gordji, M. Eshaghi; Khodaei, H.; Kim, H. M. Nearly quartic mappings in \(\beta\)-homogeneous F-spaces, Results Math., Volume 63 (2013), pp. 529-541

[5] Cho, Y. J.; Park, C. K.; Saadati, R. Functional inequalities in non-Archimedean Banach spaces, Appl. Math. Lett., Volume 23 (2010), pp. 1238-1242

[6] Cho, Y. J.; Saadati, R.; Yang, Y.-O. Approximation of homomorphisms and derivations on Lie \(C^*\)-algebras via fixed point method, J. Inequal. Appl., Volume 2013 (2013), pp. 1-9

[7] Cholewa, P. W. Remarks on the stability of functional equations, Aequationes Math., Volume 27 (1984), pp. 76-86

[8] Diaz, J. B.; Margolis, B. A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., Volume 74 (1968), pp. 305-309

[9] Ebadian, A.; Ghobadipour, N.; Rassias, T. M.; Gordji, M. Eshaghi Functional inequalities associated with Cauchy additive functional equation in non-Archimedean spaces, Discrete Dyn. Nat. Soc., Volume 2011 (2011), pp. 1-14

[10] Găvruţa, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436

[11] Hyers, D. H. On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A., Volume 27 (1941), pp. 222-224

[12] Hyers, D. H.; Isac, G.; Rassias, T. M. Stability of functional equations in several variables, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, 1998

[13] Isac, G.; Rassias, T. M. On the Hyers-Ulam stability of \(\psi\)-additive mappings, J. Approx. Theory, Volume 72 (1993), pp. 131-137

[14] Lakshmikantham, V.; Leela, S.; Devi, J. Vasundhara Theory of fractional dynamic systems, Cambridge Scientific Publishers, , 2009

[15] Lee, S.-B.; Bae, J.-H.; Park, W.-G. On the stability of an additive functional inequality for the fixed point alternative, J. Comput. Anal. Appl., Volume 17 (2014), pp. 361-371

[16] Lu, G.; Park, C. K. Hyers-Ulam Stability of Additive Set-valued Functional Equations, Appl. Math. Lett., Volume 24 (2011), pp. 1312-1316

[17] Park, C. K.; Cho, Y. S.; Han, M.-H. Functional inequalities associated with Jordan-von Neumann-type additive functional equations, J. Inequal. Appl., Volume 2007 (2007), pp. 1-13

[18] Rassias, T. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300

[19] Rassias, J. M. On approximation of approximately linear mappings by linear mappings, J. Funct. Anal., Volume 46 (1982), pp. 126-130

[20] Rassias, J. M. On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math., Volume 108 (1984), pp. 445-446

[21] Rassias, J. M. Solution of a problem of Ulam, J. Approx. Theory, Volume 57 (1989), pp. 268-273

[22] Rassias, J. M. Complete solution of the multi-dimensional problem of Ulam, Discuss. Math., Volume 14 (1994), pp. 101-107

[23] Rassias, T. M. Functional equations and inequalities, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 2000

[24] Rassias, T. M. On the stability of functional equations and a problem of Ulam, Acta Math. Appl., Volume 62 (2000), pp. 23-130

[25] Rassias, T. M. On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., Volume 251 (2000), pp. 264-284

[26] Rassias, J. M. Refined Hyers-Ulam approximation of approximately Jensen type mappings, Bull. Sci. Math., Volume 131 (2007), pp. 89-98

[27] Rassias, J. M.; Rassias, M. J. On the Ulam stability of Jensen and Jensen type mappings on restricted domains, J. Math. Anal. Appl., Volume 281 (2003), pp. 516-524

[28] Ulam, S. M. Problems in modern mathematics (Chapter VI), Wiley,, New York, 1960

[29] Xu, T. Z.; Rassias, J. M.; Xu, W. X.; A fixed point approach to the stability of a general mixed additive-cubic functional equation in quasi fuzzy normed spaces, Int. J. Phys. Sci., Volume 6 (2011), pp. 313-324

Cité par Sources :