Hyers-Ulam stability of derivations in fuzzy Banach space
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 12, p. 5970-5979.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we construct an additive functional equation, and use the fixed point alternative theorem to investigate the Hyers-Ulam stability of derivations fuzzy Banach space and fuzzy Lie Banach space associated with the following functional equation:$ f (2x - y - z)+f (x - z)+f (x + y + 2z) = f (4x)$.
DOI : 10.22436/jnsa.009.12.05
Classification : 39B82, 46S40, 39B52, 46L57
Keywords: Fuzzy normed space, additive functional equation, Hyers-Ulam stability, fixed point alternative, fuzzy Banach space.

Lu, Gang 1 ; Xie, Jun 2 ; Liu, Qi 2 ; Jin, Yuanfeng 3

1 Department of Mathematics, Zhejiang University, Hangzhou 310027, P. R. China;Department of Mathematics, School of Science, Shenyang University of Technology, Shenyang 110178, P. R. China
2 Department of Mathematics, School of Science, Shenyang University of Technology, Shenyang 110178, P. R. China
3 Department of Mathematics, Yanbian University, Yanji 133001, P. R. China
@article{JNSA_2016_9_12_a4,
     author = {Lu, Gang and Xie, Jun and Liu, Qi and Jin, Yuanfeng},
     title = {Hyers-Ulam stability of derivations in fuzzy {Banach} space},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5970-5979},
     publisher = {mathdoc},
     volume = {9},
     number = {12},
     year = {2016},
     doi = {10.22436/jnsa.009.12.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.05/}
}
TY  - JOUR
AU  - Lu, Gang
AU  - Xie, Jun
AU  - Liu, Qi
AU  - Jin, Yuanfeng
TI  - Hyers-Ulam stability of derivations in fuzzy Banach space
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5970
EP  - 5979
VL  - 9
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.05/
DO  - 10.22436/jnsa.009.12.05
LA  - en
ID  - JNSA_2016_9_12_a4
ER  - 
%0 Journal Article
%A Lu, Gang
%A Xie, Jun
%A Liu, Qi
%A Jin, Yuanfeng
%T Hyers-Ulam stability of derivations in fuzzy Banach space
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5970-5979
%V 9
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.05/
%R 10.22436/jnsa.009.12.05
%G en
%F JNSA_2016_9_12_a4
Lu, Gang; Xie, Jun; Liu, Qi; Jin, Yuanfeng. Hyers-Ulam stability of derivations in fuzzy Banach space. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 12, p. 5970-5979. doi : 10.22436/jnsa.009.12.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.05/

[1] Alizadeh, S.; Moradlou, F. Approximate a quadratic mapping in multi-Banach spaces, a fixed point approach, Int. J. Nonlinear Anal. Appl., Volume 7 (2016), pp. 63-75

[2] Aoki, T. On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66

[3] Bag, T.; Samanta, S. K. Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., Volume 11 (2003), pp. 687-705

[4] Bag, T.; Samanta, S. K. Fuzzy bounded linear operators, Fuzzy Sets and Systems, Volume 151 (2005), pp. 513-547

[5] Balopoulos, V.; Hatzimichailidis, A. G.; Papadopoulos, B. K. Distance and similarity measures for fuzzy operators, Inform. Sci., Volume 177 (2007), pp. 2336-2348

[6] Biswas, R. Fuzzy inner product spaces and fuzzy norm functions, Inform. Sci., Volume 53 (1991), pp. 185-190

[7] Brillouët-Belluot, N.; Brzdęk, J.; Ciepliński, K. On some recent developments in Ulam's type stability,, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-41

[8] Brzdęk, J. Hyperstability of the Cauchy equation on restricted domains, Acta Math. Hungar., Volume 141 (2013), pp. 58-67

[9] Brzdęk, J.; Chudziak, J.; Páles, Z. A fixed point approach to stability of functional equations, Nonlinear Anal., Volume 74 (2011), pp. 6728-6732

[10] Brzdęk, J.; Ciepliński, K. Hyperstability and superstability, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-13

[11] Brzdęk, J.; Fošner, A. Remarks on the stability of Lie homomorphisms, J. Math. Anal. Appl., Volume 400 (2013), pp. 585-596

[12] Cădariu, L.; Găvruţa, L.; Găvruţa, P. Fixed points and generalized Hyers-Ulam stability, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-10

[13] Cădariu, L.; Radu, V. Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math., Volume 4 (2003), pp. 1-7

[14] Chadli, L. S.; Melliani, S.; Moujahid, A.; Elomari, M. Generalized solution of Sine-Gordon equation, Int. J. Nonlinear Anal. Appl., Volume 7 (2016), pp. 87-92

[15] Chang, I. S.; Gordji, M. Eshaghi; Khodaei, H.; Kim, H. M. Nearly quartic mappings in \(\beta\)-homogeneous F-spaces, Results Math., Volume 63 (2013), pp. 529-541

[16] Cheng, S. C.; Mordeson, J. N. Fuzzy linear operators and fuzzy normed linear spaces, Bull. Calcutta Math. Soc., Volume 86 (1994), pp. 429-436

[17] Ciepliński, K. Applications of fixed point theorems to the Hyers-Ulam stability of functional equations-a survey, Ann. Funct. Anal., Volume 3 (2012), pp. 151-164

[18] Diaz, J. B.; Margolis, B. A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., Volume 74 (1968), pp. 305-309

[19] Gordji, M. Eshaghi; Khodaei, H.; Rassias, T. M.; Khodabakhsh, R. \(J^*\)-homomorphisms and \(J^*\)-derivations on \(J^*\)-algebras for a generalized Jensen type functional equation, Fixed Point Theory, Volume 13 (2012), pp. 481-494

[20] Felbin, C. Finite-dimensional fuzzy normed linear space, Fuzzy Sets and Systems, Volume 48 (1992), pp. 239-248

[21] Găvruţa, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436

[22] Hyers, D. H. On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A, Volume 27 (1941), pp. 222-224

[23] Hyers, D. H.; Isac, G.; Rassias, T. M. Stability of functional equations in several variables, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, 1998

[24] Isac, G.; Rassias, T. M. On the Hyers-Ulam stability of \(\psi\) -additive mappings, J. Approx. Theory, Volume 72 (1993), pp. 131-137

[25] Jabłoński, W. Sum of graphs of continuous functions and boundedness of additive operators, J. Math. Anal. Appl., Volume 312 (2005), pp. 527-534

[26] Jung, S.-M. Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer Optimization and Its Applications, Springer, New York, 2011

[27] Katsaras, A. K. Fuzzy topological vector spaces, II, Fuzzy Sets and Systems, Volume 12 (1984), pp. 143-154

[28] Khodaei, H.; Khodabakhsh, R.; Gordji, M. Eshaghi Fixed points, Lie \(*\)-homomorphisms and Lie \(*\)-derivations on Lie \(C^*\)-algebras, Fixed Point Theory, Volume 14 (2013), pp. 387-400

[29] Kramosil, I.; Michálek, J. Fuzzy metrics and statistical metric spaces, Kybernetika (Prague), Volume 11 (1975), pp. 336-344

[30] Krishna, S. V.; Sarma, K. K. M. Separation of fuzzy normed linear spaces, Fuzzy Sets and Systems, Volume 63 (1994), pp. 207-217

[31] Lu, G.; Park, C. K. Hyers-Ulam stability of additive set-valued functional equations, Appl. Math. Lett., Volume 24 (2011), pp. 1312-1316

[32] Mihet, D.; Radu, V. On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., Volume 343 (2008), pp. 567-572

[33] Moradlou, F.; Gordji, M. Eshaghi Approximate Jordan derivations on Hilbert \(C^*\)-modules, Fixed Point Theory, Volume 14 (2013), pp. 413-425

[34] Park, C.-G. Homomorphisms between Poisson \(JC^*\)-algebras, Bull. Braz. Math. Soc. (N.S.), Volume 36 (2005), pp. 79-97

[35] Park, C. K. Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory Appl., Volume 2007 (2007), pp. 1-15

[36] Park, C. K.; Ghasemi, K.; Ghaleh, S. Ghaffary Fuzzy n-Jordan \(*\)-derivations on induced fuzzy \(C^*\)-algebras, J. Comput. Anal. Appl., Volume 16 (2014), pp. 494-502

[37] Park, C. K.; Kim, S. O.; Lee, J. R.; Shin, D. Y. Quadratic \(\rho\)-functional inequalities in \(\beta\)-homogeneous normed spaces, Int. J. Nonlinear Anal. Appl., Volume 6 (2015), pp. 21-26

[38] Park, C.; Najati, A. Generalized additive functional inequalities in Banach algebras, Int. J. Nonlinear Anal. Appl., Volume 1 (2010), pp. 54-62

[39] Park, C.; Rassias, J. M. Stability of the Jensen-type functional equation in \(C^*\)-algebras: a fixed point approach, Abstr. Appl. Anal., Volume 2009 (2009), pp. 1-17

[40] Rassias, T. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300

[41] Rassias, T. M. Functional equations and inequalities, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 2000

[42] Rassias, T. M. On the stability of functional equations and a problem of Ulam, Acta Math. Appl., Volume 62 (2000), pp. 23-130

[43] Rassias, T. M. On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., Volume 251 (2000), pp. 264-284

[44] Saadati, R.; Vaezpour, S. M. Some results on fuzzy Banach spaces, J. Appl. Math. Comput., Volume 17 (2005), pp. 475-484

[45] Shieh, B.-S. Infinite fuzzy relation equations with continuous t-norms, Inform. Sci., Volume 2008 (178), pp. 1961-1967

[46] Ulam, S. M. Problems in modern mathematics, Wiley,, New York, 1960

[47] Wu, C. X.; Fang, J. X. Fuzzy generalization of Klomogoroffs theorem, J. Harbin Inst. Technol., Volume 1 (1984), pp. 1-7

[48] Xiao, J.-Z.; Zhu, X.-H. Fuzzy normed space of operators and its completeness, Fuzzy Sets and Systems, Volume 133 (2003), pp. 389-399

Cité par Sources :