Coupled coincidence point results for Geraghty-type contraction by using monotone property in partially ordered $S$-metric spaces
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 12, p. 5950-5969.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduce a new concept of generalized compatibility for a pair of mappings defined on a product $S$-metric and prove certain coupled coincidence point results for mappings satisfying Geraghty- type contraction by using g-monotone instead of the usually mixed monotone property. We also give some sufficient conditions for the uniqueness of a coupled coincidence point. Our results generalize the corresponding results of Zhou and Liu [M. Zhou, X.-L. Liu, J. Funct. Spaces, 2016 (2016), 9 pages], without mixed weakly monotone property and Kadelburg et al. [Z. Kadelburg, P. Kuman, S. Radenović, W. Sintunavarat, Fixed Point Theory Appl., 2015 (2015), 14 pages] from usually metric to $S$-metric. An illustrative example is presented to support our results.
DOI : 10.22436/jnsa.009.12.04
Classification : 47H10, 54H25, 46S40
Keywords: Coupled coincidence point, generalized compatibility, monotone property, partially ordered \(S\)-metric space, Geraghty-type contraction.

Zhou, Mi 1 ; Liu, Xiao-lan 2 ; Dolićanin-Dekić, Diana 3 ; Damjanović, Boško 4

1 School of Science and Technology, Sanya College, 572022, Sanya, Hainan, China
2 College of Science, Sichuan University of Science and Engineering, 643000, Zigong, Sichuan, China;Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing, Zigong, Sichuan 643000, China
3 Faculty of Technical Science, University of Pristina-Kosovska Mitrovica, Pristina, Serbia
4 Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
@article{JNSA_2016_9_12_a3,
     author = {Zhou, Mi and Liu, Xiao-lan and Doli\'canin-Deki\'c, Diana and Damjanovi\'c, Bo\v{s}ko},
     title = {Coupled coincidence point results for {Geraghty-type} contraction by using monotone property in partially ordered {\(S\)-metric} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5950-5969},
     publisher = {mathdoc},
     volume = {9},
     number = {12},
     year = {2016},
     doi = {10.22436/jnsa.009.12.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.04/}
}
TY  - JOUR
AU  - Zhou, Mi
AU  - Liu, Xiao-lan
AU  - Dolićanin-Dekić, Diana
AU  - Damjanović, Boško
TI  - Coupled coincidence point results for Geraghty-type contraction by using monotone property in partially ordered \(S\)-metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5950
EP  - 5969
VL  - 9
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.04/
DO  - 10.22436/jnsa.009.12.04
LA  - en
ID  - JNSA_2016_9_12_a3
ER  - 
%0 Journal Article
%A Zhou, Mi
%A Liu, Xiao-lan
%A Dolićanin-Dekić, Diana
%A Damjanović, Boško
%T Coupled coincidence point results for Geraghty-type contraction by using monotone property in partially ordered \(S\)-metric spaces
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5950-5969
%V 9
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.04/
%R 10.22436/jnsa.009.12.04
%G en
%F JNSA_2016_9_12_a3
Zhou, Mi; Liu, Xiao-lan; Dolićanin-Dekić, Diana; Damjanović, Boško. Coupled coincidence point results for Geraghty-type contraction by using monotone property in partially ordered \(S\)-metric spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 12, p. 5950-5969. doi : 10.22436/jnsa.009.12.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.04/

[1] Borcut, M. Tripled coincidence theorems for monotone mappings in partially ordered metric spaces, Creat. Math. Inform., Volume 21 (2012), pp. 135-142

[2] Borcut, M. Tripled fixed point theorems for monotone mappings in partially ordered metric spaces, Carpathian J. Math., Volume 28 (2012), pp. 207-214

[3] Dung, N. V. On coupled common fixed points for mixed weakly monotone maps in partially ordered S-metric spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-17

[4] Bhaskar, T. Gnana; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., Volume 65 (2006), pp. 1379-1393

[5] Gordji, M. E.; Akbartabar, E.; Cho, Y. J.; Ramezani, M. Coupled common fixed point theorems for mixed weakly monotone mappings in partially ordered metric spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-12

[6] Kadelburg, Z.; Kuman, P.; Radenović, S.; Sintunavarat, W. Common coupled fixed point theorems for Geraghty-type contraction mappings using monotone property, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-14

[7] Kadelburg, Z.; Radenović, S. Remarks on some recent M. Borcut's results in partially ordered metric spaces, Int. J. Nonlinear Anal. Appl., Volume 6 (2015), pp. 96-104

[8] Lakshmikantham, V.; Ćirić, L. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., Volume 70 (2009), pp. 4341-4349

[9] Radenović, S. Bhaskar-Lakshmikantham type results for monotone mappings in partially ordered metric spaces, Int. J. Nonlinear Anal. Appl., Volume 5 (2014), pp. 96-103

[10] Radenović, S. Coupled fixed point theorems for monotone mappings in partially ordered metric spaces, Kragujevac J. Math., Volume 38 (2014), pp. 249-257

[11] Radenović, S. Some coupled coincidence points results of monotone mappings in partially ordered metric spaces, Int. J. Nonlinear Anal. Appl., Volume 5 (2014), pp. 174-184

[12] Sedghi, S.; Dung, N. V. Fixed point theorems on S-metric spaces, Mat. Vensnik, Volume 66 (2014), pp. 113-124

[13] Sedghi, S.; Shobe, N.; Aliouche, A. A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, Volume 64 (2012), pp. 258-266

[14] Zhou, M.; Liu, X.-L. Coupled common fixed point theorems for Geraghty-type contraction mappings using mixed weakly monotone property in partially ordered S-metric spaces, J. Funct. Spaces, Volume 2016 (2016), pp. 1-9

Cité par Sources :