Some new coupled fixed point theorems in ordered partial $b$-metric spaces
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 12, p. 5931-5949.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we establish some new coupled fixed point theorems in ordered partial $b$-metric spaces. Also, an example is provided to support our new results. The results presented in this paper extend and improve several well-known comparable results.
DOI : 10.22436/jnsa.009.12.03
Classification : 47H10, 54H25
Keywords: Common coupled fixed point, coupled coincidence point, partially ordered set, mixed \(g\)-monotone property, partial \(b\)-metric space.

Li, Hedong 1 ; Gu, Feng 1

1 Institute of Applied Mathematics and Department of Mathematics, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
@article{JNSA_2016_9_12_a2,
     author = {Li, Hedong and Gu, Feng},
     title = {Some new coupled fixed point theorems in ordered partial \(b\)-metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5931-5949},
     publisher = {mathdoc},
     volume = {9},
     number = {12},
     year = {2016},
     doi = {10.22436/jnsa.009.12.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.03/}
}
TY  - JOUR
AU  - Li, Hedong
AU  - Gu, Feng
TI  - Some new coupled fixed point theorems in ordered partial \(b\)-metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5931
EP  - 5949
VL  - 9
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.03/
DO  - 10.22436/jnsa.009.12.03
LA  - en
ID  - JNSA_2016_9_12_a2
ER  - 
%0 Journal Article
%A Li, Hedong
%A Gu, Feng
%T Some new coupled fixed point theorems in ordered partial \(b\)-metric spaces
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5931-5949
%V 9
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.03/
%R 10.22436/jnsa.009.12.03
%G en
%F JNSA_2016_9_12_a2
Li, Hedong; Gu, Feng. Some new coupled fixed point theorems in ordered partial \(b\)-metric spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 12, p. 5931-5949. doi : 10.22436/jnsa.009.12.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.03/

[1] Abbas, M.; Khan, M. Ali; Radenović, S. Common coupled fixed point theorems in cone metric spaces for w- compatible mappings, Appl. Math. Comput., Volume 217 (2010), pp. 195-202

[2] Abdeljawad, T. Fixed points for generalized weakly contractive mappings in partial metric spaces, Math. Comput. Modelling, Volume 54 (2011), pp. 2923-2927

[3] Abdeljawad, T.; Karapınar, E.; Taş, K. Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett., Volume 24 (2011), pp. 1900-1904

[4] Aghajani, A.; Arab, R. Fixed points of (\(\psi,\phi,\theta\))-contractive mappings in partially ordered b-metric spaces and application to quadratic integral equations, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-20

[5] Akkouchi, M. A common fixed point theorem for expansive mappings under strict implicit conditions on b-metric spaces, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., Volume 50 (2011), pp. 5-15

[6] Aydi, H.; Karapınar, E.; Shatanawi, W. Coupled fixed point results for \(\phi,\psi\) -weakly contractive condition in ordered partial metric spaces, Comput. Math. Appl., Volume 62 (2011), pp. 4449-4460

[7] Czerwik, S. Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11

[8] George, R.; Reshma, K. P.; Padmavati, A. Fixed point theorems for cyclic contractions in b-metric spaces, J. Nonlinear Funct. Anal., Volume 2015 (2015), pp. 1-22

[9] Bhaskar, T. Gnana; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., Volume 65 (2006), pp. 1379-1393

[10] Gupta, A.; Gautam, P. Some coupled fixed point theorems on quasi-partial b-metric spaces, Int. J. Math. Anal., Volume 9 (2015), pp. 293-306

[11] Harjani, J.; López, B.; Sadarangani, K. Fixed point theorems for mixed monotone operators and applications to integral equations, Nonlinear Anal., Volume 74 (2011), pp. 1749-1760

[12] Khan, M. S.; Swaleh, M.; Sessa, S. Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., Volume 30 (1984), pp. 1-9

[13] Kim, J. K.; Tuyen, T. M. Approximation common zero of two accretive operators in Banach spaces, Appl. Math. Comput., Volume 283 (2016), pp. 265-281

[14] Lakshmikantham, V.; Ćirić, L. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., Volume 70 (2009), pp. 4341-4349

[15] Li, H.; Gu, F. A new common fixed point theorem for four maps in b-metric spaces, J. Hangzhou Norm. Univ., Nat. Sci. Ed., Volume 15 (2016), pp. 75-80

[16] Liu, L.; Gu, F. The common fixed point theorem for a class of twice power type \(\Phi\)-contractive mapping in b-metric spaces, J. Hangzhou Norm. Univ., Nat. Sci. Ed., Volume 15 (2016), pp. 171-177

[17] Luong, N. V.; Thuan, N. X. Coupled fixed points in partially ordered metric spaces and application, Nonlinear Anal., Volume 74 (2011), pp. 983-992

[18] topology, Partial metric; applications, Papers on general topology and S. G. Matthews, Flushing, NY, (1992), 183-197, Ann. New York Acad. Sci., New York Acad. Sci., New York, 1994

[19] Mustafa, Z.; Roshan, J. R.; Parvaneh, V.; Kadelburg, Z. Some common fixed point results in ordered partial b-metric spaces, J. Inequal. Appl., Volume 2013 (2013), pp. 1-26

[20] Nashine, H. K.; Shatanawi, W. Coupled common fixed point theorems for a pair of commuting mappings in partially ordered complete metric spaces, Comput. Math. Appl., Volume 62 (2011), pp. 1984-1993

[21] Qin, X. L.; Yao, J.-C. Weak convergence of a Mann-like algorithm for nonexpansive and accretive operators, J. Inequal. Appl., Volume 2016 (2016), pp. 1-9

[22] Piri, H. Some Suzuki type fixed point theorems in complete cone b-metric spaces over a solid vector space, Commun. Optim. Theory, Volume 2016 (2016), pp. 1-15

[23] Rao, K. P. R.; Parvathi, K. V. Siva; Imdad, M. A coupled coincidence point theorem on ordered partial b-metric-like spaces, Electron. J. Math. Anal. Appl., Volume 3 (2015), pp. 141-149

[24] Roshan, J. R.; Parvaneh, V.; Altun, I. Some coincidence point results in ordered b-metric spaces and applications in a system of integral equations, Appl. Math. Comput., Volume 226 (2014), pp. 725-737

[25] Saluja, G. S. Some fixed point theorems for generalized contractions involving rational expressions in b-metric spaces, Commun. Optim. Theory, Volume 2016 (2016), pp. 1-13

[26] Shukla, S. Partial b-metric spaces and fixed point theorems, Mediterr. J. Math., Volume 11 (2013), pp. 703-711

[27] Zhao, J.; Wang, S. Viscosity approximation method for the split common fixed point problem of quasi-strict pseu- docontractions without prior knowledge of operator norms, Noninear Funct. Anal. Appl., Volume 20 (2015), pp. 199-213

Cité par Sources :