Common fixed point theorems for six self-maps in $b$-metric spaces with nonlinear contractive conditions
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 12, p. 5909-5930.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In the framework of a b-metric space, by using the compatible and weak compatible conditions of self- mapping pair, we discussed the existence and uniqueness of the common fixed point for a class of $\phi$-type contraction mapping, some new common fixed point theorems are obtained. In the end of the paper, we give some illustrative examples in support of our new results. The results presented in this paper extend and improve some well-known comparable results in the existing literature.
DOI : 10.22436/jnsa.009.12.02
Classification : 47H10, 54H25
Keywords: \(b\)-metric space, common fixed point, compatible maps, weak compatible maps.

Liu, Liya 1 ; Gu, Feng 1

1 Institute of Applied Mathematics and Department of Mathematics, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
@article{JNSA_2016_9_12_a1,
     author = {Liu, Liya and Gu, Feng},
     title = {Common fixed point theorems for six self-maps in \(b\)-metric spaces with nonlinear contractive conditions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5909-5930},
     publisher = {mathdoc},
     volume = {9},
     number = {12},
     year = {2016},
     doi = {10.22436/jnsa.009.12.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.02/}
}
TY  - JOUR
AU  - Liu, Liya
AU  - Gu, Feng
TI  - Common fixed point theorems for six self-maps in \(b\)-metric spaces with nonlinear contractive conditions
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5909
EP  - 5930
VL  - 9
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.02/
DO  - 10.22436/jnsa.009.12.02
LA  - en
ID  - JNSA_2016_9_12_a1
ER  - 
%0 Journal Article
%A Liu, Liya
%A Gu, Feng
%T Common fixed point theorems for six self-maps in \(b\)-metric spaces with nonlinear contractive conditions
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5909-5930
%V 9
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.02/
%R 10.22436/jnsa.009.12.02
%G en
%F JNSA_2016_9_12_a1
Liu, Liya; Gu, Feng. Common fixed point theorems for six self-maps in \(b\)-metric spaces with nonlinear contractive conditions. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 12, p. 5909-5930. doi : 10.22436/jnsa.009.12.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.02/

[1] Aghajani, A.; Abbas, M.; Roshan, J. R. Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, Volume 64 (2014), pp. 941-960

[2] Akkouchi, M. A. A common fixed point theorem for expansive mappings under strict implicit conditions on b- metric spaces, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., Volume 50 (2011), pp. 5-15

[3] Boriceanu, M. Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Mod. Math., Volume 4 (2009), pp. 285-301

[4] Boriceanu, M.; Bota, M.; Petruşel, A. Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., Volume 8 (2010), pp. 367-377

[5] Chang, S. S.; Kang, S. K.; Huang, N. J. Fixed point theorems for the pair of mappings in 2-metric space, J. Chengdu Univ. Sci. Technol., Volume 2 (1984), pp. 107-114

[6] Czerwik, S. Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11

[7] Ding, X. P. Some common fixed point theorems of commuting mappings, II, Math. Sem. Notes Kobe Univ., Volume 11 (1983), pp. 301-305

[8] Diviccaro, M. L.; Sessa, S. Some remarks on common fixed points of four mappings, Jñānābha, Volume 15 (1985), pp. 139-149

[9] Fang, N. N.; Gu, F. Two pairs of self-mappings common fixed point theorem in b-metric space, J. Hangzhou Normal Univ., Natur. Sci. Ed., Volume 15 (2016), pp. 282-289

[10] Jungck, G. Compatible mappings and common fixed points, II, Internat. J. Math. Math. Sci., Volume 11 (1988), pp. 285-288

[11] Jungck, G. Common fixed points for noncontinuous nonself maps on nonmetric space, Far East J. Math. Sci., Volume 4 (1996), pp. 199-212

[12] Kang, S. M.; Cho, Y. J.; Jungck, G. Common fixed points of compatible mappings, Internat. J. Math. Math. Sci., Volume 13 (1990), pp. 61-66

[13] Li, H.; Gu, F. A new common fixed point theorem of four maps in b-metric spaces, J. Hangzhou Norm. Univ., Natur. Sci. Ed., Volume 15 (2016), pp. 75-80

[14] Li, H.; Gu, F. A new common fixed point theorem of third power type contractive mappings in b-metric spaces, J. Hangzhou Norm. Univ., Natur. Sci. Ed., Volume 15 (2016), pp. 401-407

[15] Liu, L. L. The common fixed point theorem of (sub)compatible mappings and general ishikawa iterative loomed theorem, J. Qufu Normal Univ., Natur. Sci. Ed., Volume 16 (1990), pp. 40-44

[16] Liu, L.; Gu, F. The common fixed point theorem for a class of twice power type \(\Phi\)-contractive mapping in b-metric spaces, J. Hangzhou Norm. Univ., Natur. Sci. Ed., Volume 15 (2016), pp. 171-177

[17] Phiangsungnoen, S.; Sintunavarat, W.; Kumam, P. Fixed point results, generalized Ulam-Hyers stability and well- posedness via \(\alpha\)-admissible mappings in b-metric spaces, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-17

[18] Roshan, J. R.; Shobkolaei, N.; Sedghi, S.; Abbas, M. Common fixed point of four maps in b-metric spaces, Hacet. J. Math. Stat., Volume 43 (2014), pp. 613-624

[19] Shatanawi, W.; Pitea, A.; Lazovié, R. Contraction conditions using comparison functions on b-metric spaces, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-11

[20] Yu, J.; Gu, F. A new common fixed point theorem of six mappings in metric space, J. Hangzhou Norm. Univ., Natur. Sci. Ed., Volume 5 (2011), pp. 393-398

Cité par Sources :