Voir la notice de l'article provenant de la source International Scientific Research Publications
Liu, Liya 1 ; Gu, Feng 1
@article{JNSA_2016_9_12_a1, author = {Liu, Liya and Gu, Feng}, title = {Common fixed point theorems for six self-maps in \(b\)-metric spaces with nonlinear contractive conditions}, journal = {Journal of nonlinear sciences and its applications}, pages = {5909-5930}, publisher = {mathdoc}, volume = {9}, number = {12}, year = {2016}, doi = {10.22436/jnsa.009.12.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.02/} }
TY - JOUR AU - Liu, Liya AU - Gu, Feng TI - Common fixed point theorems for six self-maps in \(b\)-metric spaces with nonlinear contractive conditions JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5909 EP - 5930 VL - 9 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.02/ DO - 10.22436/jnsa.009.12.02 LA - en ID - JNSA_2016_9_12_a1 ER -
%0 Journal Article %A Liu, Liya %A Gu, Feng %T Common fixed point theorems for six self-maps in \(b\)-metric spaces with nonlinear contractive conditions %J Journal of nonlinear sciences and its applications %D 2016 %P 5909-5930 %V 9 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.02/ %R 10.22436/jnsa.009.12.02 %G en %F JNSA_2016_9_12_a1
Liu, Liya; Gu, Feng. Common fixed point theorems for six self-maps in \(b\)-metric spaces with nonlinear contractive conditions. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 12, p. 5909-5930. doi : 10.22436/jnsa.009.12.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.12.02/
[1] Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, Volume 64 (2014), pp. 941-960
[2] A common fixed point theorem for expansive mappings under strict implicit conditions on b- metric spaces, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., Volume 50 (2011), pp. 5-15
[3] Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Mod. Math., Volume 4 (2009), pp. 285-301
[4] Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., Volume 8 (2010), pp. 367-377
[5] Fixed point theorems for the pair of mappings in 2-metric space, J. Chengdu Univ. Sci. Technol., Volume 2 (1984), pp. 107-114
[6] Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11
[7] Some common fixed point theorems of commuting mappings, II, Math. Sem. Notes Kobe Univ., Volume 11 (1983), pp. 301-305
[8] Some remarks on common fixed points of four mappings, Jñānābha, Volume 15 (1985), pp. 139-149
[9] Two pairs of self-mappings common fixed point theorem in b-metric space, J. Hangzhou Normal Univ., Natur. Sci. Ed., Volume 15 (2016), pp. 282-289
[10] Compatible mappings and common fixed points, II, Internat. J. Math. Math. Sci., Volume 11 (1988), pp. 285-288
[11] Common fixed points for noncontinuous nonself maps on nonmetric space, Far East J. Math. Sci., Volume 4 (1996), pp. 199-212
[12] Common fixed points of compatible mappings, Internat. J. Math. Math. Sci., Volume 13 (1990), pp. 61-66
[13] A new common fixed point theorem of four maps in b-metric spaces, J. Hangzhou Norm. Univ., Natur. Sci. Ed., Volume 15 (2016), pp. 75-80
[14] A new common fixed point theorem of third power type contractive mappings in b-metric spaces, J. Hangzhou Norm. Univ., Natur. Sci. Ed., Volume 15 (2016), pp. 401-407
[15] The common fixed point theorem of (sub)compatible mappings and general ishikawa iterative loomed theorem, J. Qufu Normal Univ., Natur. Sci. Ed., Volume 16 (1990), pp. 40-44
[16] The common fixed point theorem for a class of twice power type \(\Phi\)-contractive mapping in b-metric spaces, J. Hangzhou Norm. Univ., Natur. Sci. Ed., Volume 15 (2016), pp. 171-177
[17] Fixed point results, generalized Ulam-Hyers stability and well- posedness via \(\alpha\)-admissible mappings in b-metric spaces, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-17
[18] Common fixed point of four maps in b-metric spaces, Hacet. J. Math. Stat., Volume 43 (2014), pp. 613-624
[19] Contraction conditions using comparison functions on b-metric spaces, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-11
[20] A new common fixed point theorem of six mappings in metric space, J. Hangzhou Norm. Univ., Natur. Sci. Ed., Volume 5 (2011), pp. 393-398
Cité par Sources :