Voir la notice de l'article provenant de la source International Scientific Research Publications
Gao, Feng 1 ; Srivastava, H. M. 2 ; Gao, Ya-Nan 1 ; Yang, Xiao-Jun 1
@article{JNSA_2016_9_11_a10, author = {Gao, Feng and Srivastava, H. M. and Gao, Ya-Nan and Yang, Xiao-Jun}, title = {A coupling method involving the {Sumudu} transform and the variational iteration method for a class of local fractional diffusion equations}, journal = {Journal of nonlinear sciences and its applications}, pages = {5830-5835}, publisher = {mathdoc}, volume = {9}, number = {11}, year = {2016}, doi = {10.22436/jnsa.009.11.11}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.11/} }
TY - JOUR AU - Gao, Feng AU - Srivastava, H. M. AU - Gao, Ya-Nan AU - Yang, Xiao-Jun TI - A coupling method involving the Sumudu transform and the variational iteration method for a class of local fractional diffusion equations JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5830 EP - 5835 VL - 9 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.11/ DO - 10.22436/jnsa.009.11.11 LA - en ID - JNSA_2016_9_11_a10 ER -
%0 Journal Article %A Gao, Feng %A Srivastava, H. M. %A Gao, Ya-Nan %A Yang, Xiao-Jun %T A coupling method involving the Sumudu transform and the variational iteration method for a class of local fractional diffusion equations %J Journal of nonlinear sciences and its applications %D 2016 %P 5830-5835 %V 9 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.11/ %R 10.22436/jnsa.009.11.11 %G en %F JNSA_2016_9_11_a10
Gao, Feng; Srivastava, H. M.; Gao, Ya-Nan; Yang, Xiao-Jun. A coupling method involving the Sumudu transform and the variational iteration method for a class of local fractional diffusion equations. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 11, p. 5830-5835. doi : 10.22436/jnsa.009.11.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.11/
[1] Time-fractional heat transfer equations in modeling of the non-contacting face seals, Int. J. Heat Mass Transf., Volume 100 (2016), pp. 79-88
[2] Fractional order models for system identification of thermal dynamics of buildings, Energy and Buildings, Volume 133 (2016), pp. 381-388
[3] Solution of fractional bioheat equation in terms of Fox's H-function, SpringerPlus, Volume 5 (2016), pp. 1-10
[4] State space approach to thermoelectric fluid with fractional order heat transfer, Heat Mass Transf., Volume 48 (2012), pp. 71-82
[5] Effects of variable thermal conductivity and fractional order of heat transfer on a perfect conducting infinitely long hollow cylinder, Int. J. Thermal Sci., Volume 108 (2016), pp. 62-69
[6] Heat-balance integral to fractional (half-time) heat diffusion sub-model, Thermal Sci., Volume 14 (2010), pp. 291-316
[7] The space-time fractional diffusion equation with Caputo derivatives, J. Appl. Math. Comput., Volume 19 (2005), pp. 179-190
[8] Fractional control of heat diffusion systems, Nonlinear Dyn., Volume 54 (2008), pp. 263-282
[9] Fractional-diffusion solutions for transient local temperature and heat flux, ASME J. Heat Transf., Volume 122 (2000), pp. 372-376
[10] Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem, Thermal Sci., Volume 17 (2013), pp. 715-721
[11] An improved heat conduction model with Riesz fractional Cattaneo-Christov flux, Int. J. Heat Mass Transf., Volume 103 (2016), pp. 1191-1197
[12] New results for multidimensional diffusion equations in fractal dimensional space, Rom. J. Phys., Volume 61 (2016), pp. 784-794
[13] Fractional heat conduction in infinite one-dimensional composite medium, J. Thermal Stresses, Volume 36 (2013), pp. 351-363
[14] Higher-order numerical scheme for the fractional heat equation with Dirichlet and Neumann boundary conditions, Numer. Heat Trans., Part B: Fund.: Int. J. Comput. Methodol., Volume 63 (2013), pp. 540-559
[15] Fractional calculus as a mathematical tool to improve the modeling of mass transfer phenomena in food processing, Food Eng. Rev., Volume 5 (2013), pp. 45-55
[16] A reliable algorithm for a local fractional Tricomi equation arising in fractal transonic flow, Entropy, Volume 18 (2016), pp. 1-8
[17] Local fractional Sumudu transform with application to IVPs on Cantor sets, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-7
[18] Analysis of water injection in fractured reservoirs using a fractional-derivative-based mass and heat transfer model, Math. Geosci., Volume 47 (2015), pp. 31-49
[19] Advanced local fractional calculus and its applications, World Science Publisher, New York, 2012
[20] Fractal heat conduction problem solved by local fractional variation iteration method, Thermal Sci.,, Volume 17 (2013), pp. 625-628
[21] Local fractional similarity solution for the diffusion equation defined on Cantor sets, Appl. Math. Lett., Volume 47 (2015), pp. 54-60
[22] Local fractional integral transforms and their applications, Elsevier/ Academic Press, Amsterdam, 2016
[23] An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., Volume 29 (2015), pp. 499-504
Cité par Sources :