A characteristic splitting mixed finite element method for three-dimensional saltwater intrusion problem
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 11, p. 5806-5820.

Voir la notice de l'article provenant de la source International Scientific Research Publications

A combined method is developed for solving saltwater intrusion problem. A splitting positive definite mixed element method is used to solve the parabolic-type water head equation and a characteristic finite element method is used to solve the convection-diffusion type concentration equation. The convergence of this method is considered and the optimal $L^2$-norm error estimate is also derived.
DOI : 10.22436/jnsa.009.11.09
Classification : 65M60, 65M25, 65M12, 65M15, 35K55, 76M10, 76S05
Keywords: Method of characteristics, mixed finite element, splitting system, saltwater intrusion problem.

Zhang, Jiansong 1 ; Zhu, Jiang 2 ; Yang, Danping 3 ; Guo, Hui 4

1 Department of Applied Mathematics, China University of Petroleum, Qingdao 266580, China
2 Laboratorio Nacional de Computacao Cientica, MCTI, Avenida Getulio Vargas 333, 25651-075 Petropolis, RJ, Brazil
3 Department of Mathematics, East China Normal University, Shanghai 200062, China
4 Department of Computational Mathematics, China University of Petroleum, Qingdao 266580, China
@article{JNSA_2016_9_11_a8,
     author = {Zhang, Jiansong and Zhu, Jiang and Yang, Danping and Guo, Hui},
     title = {A characteristic splitting mixed finite element method for three-dimensional saltwater intrusion problem},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5806-5820},
     publisher = {mathdoc},
     volume = {9},
     number = {11},
     year = {2016},
     doi = {10.22436/jnsa.009.11.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.09/}
}
TY  - JOUR
AU  - Zhang, Jiansong
AU  - Zhu, Jiang
AU  - Yang, Danping
AU  - Guo, Hui
TI  - A characteristic splitting mixed finite element method for three-dimensional saltwater intrusion problem
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5806
EP  - 5820
VL  - 9
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.09/
DO  - 10.22436/jnsa.009.11.09
LA  - en
ID  - JNSA_2016_9_11_a8
ER  - 
%0 Journal Article
%A Zhang, Jiansong
%A Zhu, Jiang
%A Yang, Danping
%A Guo, Hui
%T A characteristic splitting mixed finite element method for three-dimensional saltwater intrusion problem
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5806-5820
%V 9
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.09/
%R 10.22436/jnsa.009.11.09
%G en
%F JNSA_2016_9_11_a8
Zhang, Jiansong; Zhu, Jiang; Yang, Danping; Guo, Hui. A characteristic splitting mixed finite element method for three-dimensional saltwater intrusion problem. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 11, p. 5806-5820. doi : 10.22436/jnsa.009.11.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.09/

[1] Adams, R. A. Sobolev spaces, Pure and Applied Mathematics, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975

[2] Andersen, P. F.; White, H. O.; Mercer, J. W.; Truschel, A. D.; Huyakorn, P. S. Numerical modeling of ground water flow and saltwater transport in Northern Pinellas County, Florida, In Proceedings of the Focus Conference on Southeastern Ground Water Issues. National Water Well Association, Dublin OH, Volume 1986 (1986), pp. 419-449

[3] Ashim, D. G.; Poojitha, N. D.; Yapa, D. Saltwater encroachment in an aquifer, Water Res. Res., Volume 18 (1982), pp. 546-550

[4] Bell, J. B.; Dawson, C. N.; Shubin, G. R. An unsplit, higher order Godunov method for scalar conservation laws in multiple dimensions, J. Comput. Phys., Volume 74 (1988), pp. 1-24

[5] Celia, M. A.; Russell, T. F.; Herrera, I.; Ewing, R. E. An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation, Adv. Water Res., Volume 13 (1990), pp. 187-206

[6] Ciarlet, P. G. The finite element method for elliptic problems, Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978

[7] Diersch, H. J. Finite element modelling of recirculating density-driven saltwater intrusion processes in groundwater, Adv. Water Res., Volume 11 (1988), pp. 25-43

[8] Douglas, J.; Jr.; Russell, T. F. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., Volume 19 (1982), pp. 871-885

[9] Huyakorn, P. S.; Anderson, P. F.; Mercer, J. W.; White, H. O.; Jr. Saltwater intrusion in aquifers: development and testing of a three-dimensional finite element model, Water Res. Res., Volume 23 (1987), pp. 293-312

[10] Johnson, C. Streamline diffusion methods for problems in fluid mechanics, Finite Elem. Fluids, Volume 6 (1986), pp. 251-261

[11] Lian, X. M.; Rui, H. X. A discontinuous Galerkin method combined with mixed finite element for seawater intrusion problem, J. Syst. Sci. Complex, Volume 23 (2010), pp. 830-845

[12] Long, X. H.; Li, Y. X. Multistep characteristic finite element method for seawater intrusion problem, Numer. Math. J. Chinese Univ., Volume 4 (2008), pp. 325-339

[13] Rui, H. X.; Kim, S. C.; Kim, S. D. A remark on least-squares mixed element methods for reaction-diffusion problems, J. Comput. Appl. Math., Volume 202 (2007), pp. 230-236

[14] Rui, H. X.; Kim, S. D.; Kim, S. C. Split least-squares finite element methods for linear and nonlinear parabolic problems, J. Comput. Appl. Math., Volume 223 (2009), pp. 938-952

[15] Segol, G.; Pinder, G. F.; Gray, W. G. A Galerkinfinite element technique for calculating the transient position of the saltwater front, Water Res. Res., Volume 11 (1975), pp. 343-347

[16] Wang, H. An optimal-order error estimate for a family of ELLAM-MFEM approximations to porous medium flow, SIAM J. Numer. Anal., Volume 46 (2008), pp. 2133-2152

[17] Wang, H.; Liang, D.; Ewing, R. E.; Lyons, S. L. An ELLAM-MFEM solution technique for compressible fluid flows in porous media with point sources and sinks, J. Comput. Phys., Volume 159 (2000), pp. 344-376

[18] Wang, H.; Liang, D.; Ewing, R. E.; Lyons, S. L.; Qin, G. An ELLAM approximation for highly compressible multicomponent flows in porous media Locally conservative numerical methods for flow in porous media, Comput. Geosci., Volume 6 (2002), pp. 227-251

[19] Xue, Y.-Q.; Xie, C.-H.; Wang, J. C. Study on joint-surface of saltwater and freshwater in seawater intrusion problem, Nanjing University Press, Nanjing, 1991

[20] Yang, D.-P. Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection- diffusion problems, Math. Comp., Volume 69 (2000), pp. 929-963

[21] Yang, D.-P. A splitting positive definite mixed element method for miscible displacement of compressible flow in porous media, Numer. Methods Partial Differential Equations, Volume 17 (2001), pp. 229-249

[22] Yuan, Y. R. Characteristic finite element methods for positive semidefinite problem of two phase miscible flow in three dimensions, Chinese Sci. Bull., Volume 22 (1996), pp. 2027-2032

[23] Yuan, Y. R.; Du, N.; Han, Y.-J. Careful numerical simulation and analysis of migration-accumulation of Tanhai Region, Appl. Math. Mech., Volume 26 (2005), pp. 741-752

[24] Yuan, Y. R.; Liang, D.; Rui, H. X. Characteristics-finite element methods for seawater intrusion numerical simulation and theoretical analysis, Acta Math. Appl. Sin., Volume 14 (1998), pp. 11-23

[25] Yuan, Y. R.; Liang, D.; Rui, H. X. Numerical method and simulation of seawater intrusion and protection projects, Chinese J. Comput. Phys., Volume 18 (2001), pp. 556-562

[26] Yuan, Y. R.; Liang, D.; Rui, H. X. Predicting the consequences of seawater intrusion and protection projects, Appl. Math. Mech., Volume 22 (2001), pp. 1291-1300

[27] Yuan, Y. R.; Rui, D. Liang H. X. The modified method of upwind with finite difference fractional steps procedure for the numerical simulation and analysis of seawater intrusion, Progr. Natur. Sci. (English Ed.), Volume 16 (2006), pp. 1127-1140

[28] Yuan, Y. R.; Liang, D.; Rui, H. X.; Wang, G. H. The characteristics finite difference method for seawater intrusion numerical simulation and optimal order \(L^2\) error estimates, Acta Math. Appl. Sin., Volume 19 (1996), pp. 395-404

[29] Yuan, Y. R.; Rui, H. X.; Liang, D.; Li, C. F. The theory and application of upwind finite difference fractional steps procedure for seawater intrusion, Int. J. Geosci., Volume 3 (2012), pp. 972-991

[30] Zhang, Z.-Y. The alternating-direction schemes and numerical analysis for the three-dimensional seawater intrusion simulation, Acta Math. Appl. Sin. Engl. Ser., Volume 18 (2002), pp. 389-404

[31] Zhang, J. S.; Guo, H. A split least-squares characteristic mixed element method for nonlinear nonstationary convection-diffusion problem, Int. J. Comput. Math., Volume 89 (2012), pp. 932-943

[32] Zhang, J. S.; Yang, D.-P. A fully-discrete splitting positive definite mixed finite element scheme for compressible miscible displacement in porous media, J. Shandong Univ. Nat. Sci., Volume 41 (2006), pp. 1-10

[33] Zhang, J. S.; Yang, D.-P. A splitting positive definite mixed element method for second-order hyperbolic equations, Numer. Methods Partial Differential Equations, Volume 25 (2009), pp. 622-636

[34] Zhang, J. S.; Yang, D.-P.; Shen, S. Q.; Zhu, J. A new MMOCAA-MFE method for compressible miscible displacement in porous media, Appl. Numer. Math., Volume 80 (2014), pp. 65-80

[35] Zhu, J. The characteristic numerical methods for the KdV equation, I, (Chinese) Numer. Math. J. Chinese Univ., Volume 10 (1988), pp. 11-27

[36] Zhu, J. The characteristic numerical methods for nonlinear RLW equations, Acta Math. Appl. Sin., Volume 13 (1990), pp. 64-73

Cité par Sources :