Fixed points of some set-valued F-contractions
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 11, p. 5790-5805.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Fixed point theorems of several set-valued F-contractions without using the Hausdorff metric are provided. Our results extend substantially the results due to Nadler [S. B. Nadler, Jr., Pacific J. Math., 30 (1969), 475-488] and Mizoguchi and Takahashi [N. Mizoguchi, W. Takahashi, J. Math. Anal. Appl., 141 (1989), 177-188]. Five nontrivial examples are given.
DOI : 10.22436/jnsa.009.11.08
Classification : 54H25
Keywords: Set-valued F-contraction, fixed point, complete metric space.

Liu, Zeqing 1 ; Na, Xue 1 ; Kwun, Young Chel 2 ; Kang, Shin Min 3

1 Department of Mathematics, Liaoning Normal University, Dalian, Liaoning 116029, P. R. China
2 Department of Mathematics, Dong-A University, Busan 49315, Korea
3 Department of Mathematics and the RINS, Gyeongsang National University, Jinju 52828, Korea;Center for General Education, China Medical University, Taiwan, Taichung 40402, Taiwan
@article{JNSA_2016_9_11_a7,
     author = {Liu, Zeqing and Na, Xue and Kwun, Young Chel and Kang, Shin Min},
     title = {Fixed points of some set-valued {F-contractions}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5790-5805},
     publisher = {mathdoc},
     volume = {9},
     number = {11},
     year = {2016},
     doi = {10.22436/jnsa.009.11.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.08/}
}
TY  - JOUR
AU  - Liu, Zeqing
AU  - Na, Xue
AU  - Kwun, Young Chel
AU  - Kang, Shin Min
TI  - Fixed points of some set-valued F-contractions
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5790
EP  - 5805
VL  - 9
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.08/
DO  - 10.22436/jnsa.009.11.08
LA  - en
ID  - JNSA_2016_9_11_a7
ER  - 
%0 Journal Article
%A Liu, Zeqing
%A Na, Xue
%A Kwun, Young Chel
%A Kang, Shin Min
%T Fixed points of some set-valued F-contractions
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5790-5805
%V 9
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.08/
%R 10.22436/jnsa.009.11.08
%G en
%F JNSA_2016_9_11_a7
Liu, Zeqing; Na, Xue; Kwun, Young Chel; Kang, Shin Min. Fixed points of some set-valued F-contractions. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 11, p. 5790-5805. doi : 10.22436/jnsa.009.11.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.08/

[1] Acar, Ö.; Durmaz, G.; Minak, G. Generalized multivalued F-contractions on complete metric spaces, Bull. Iranian Math. Soc., Volume 40 (2014), pp. 1469-1478

[2] Aydi, H.; Abbas, M.; Vetro, C. Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topology Appl., Volume 159 (2012), pp. 3234-3242

[3] Ćirić, L. Multi-valued nonlinear contraction mappings, Nonlinear Anal., Volume 71 (2009), pp. 2716-2723

[4] Cosentino, M.; Vetro, P. Fixed point results for F-contractive mappings of Hardy-Rogers-type, Filomat, Volume 28 (2014), pp. 715-722

[5] Daffer, P. Z.; Kaneko, H. Fixed points of generalized contractive multi-valued mappings, J. Math. Anal. Appl., Volume 192 (1995), pp. 655-666

[6] Eldred, A. A.; Anuradha, J.; Veeramani, P. On equivalence of generalized multi-valued contractions and Nadler's fixed point theorem, J. Math. Anal. Appl., Volume 336 (2007), pp. 751-757

[7] Feng, Y. Q.; Liu, S. Y. Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl., Volume 317 (2006), pp. 103-112

[8] Hussain, N.; Salimi, P. uzuki-Wardowski type fixed point theorems for \(\alpha\)-GF-contractions, Taiwanese J. Math., Volume 18 (2014), pp. 1879-1895

[9] Klim, D.; Wardowski, D. Fixed point theorems for set-valued contractions in complete metric spaces,, J. Math. Anal. Appl., Volume 334 (2007), pp. 132-139

[10] Macansantos, P. S. A generalized Nadler-type theorem in partial metric spaces, Int. J. Math. Anal. (Ruse), Volume 7 (2013), pp. 343-348

[11] Mınak, G.; Helvacı, A.; Altun, I. Ćirić type generalized F-contractions on complete metric spaces and fixed point results, Filomat, Volume 28 (2014), pp. 1143-1151

[12] Mizoguchi, N.; Takahashi, W. Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl., Volume 141 (1989), pp. 177-188

[13] Nadler, S. B.; Jr. Multi-valued contraction mappings, Pacific J. Math., Volume 30 (1969), pp. 475-488

[14] Paesano, D.; Vetro, C. Multi-valued F-contractions in 0-complete partial metric spaces with application to Volterra type integral equation, Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM, Volume 108 (2014), pp. 1005-1020

[15] Wardowski, D. On set-valued contractions of Nadler type in cone metric spaces, Appl. Math. Lett., Volume 24 (2011), pp. 275-278

[16] Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory and Appl., Volume 2012 (2012), pp. 1-7

Cité par Sources :