Voir la notice de l'article provenant de la source International Scientific Research Publications
Liu, Zeqing 1 ; Na, Xue 1 ; Kwun, Young Chel 2 ; Kang, Shin Min 3
@article{JNSA_2016_9_11_a7, author = {Liu, Zeqing and Na, Xue and Kwun, Young Chel and Kang, Shin Min}, title = {Fixed points of some set-valued {F-contractions}}, journal = {Journal of nonlinear sciences and its applications}, pages = {5790-5805}, publisher = {mathdoc}, volume = {9}, number = {11}, year = {2016}, doi = {10.22436/jnsa.009.11.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.08/} }
TY - JOUR AU - Liu, Zeqing AU - Na, Xue AU - Kwun, Young Chel AU - Kang, Shin Min TI - Fixed points of some set-valued F-contractions JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5790 EP - 5805 VL - 9 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.08/ DO - 10.22436/jnsa.009.11.08 LA - en ID - JNSA_2016_9_11_a7 ER -
%0 Journal Article %A Liu, Zeqing %A Na, Xue %A Kwun, Young Chel %A Kang, Shin Min %T Fixed points of some set-valued F-contractions %J Journal of nonlinear sciences and its applications %D 2016 %P 5790-5805 %V 9 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.08/ %R 10.22436/jnsa.009.11.08 %G en %F JNSA_2016_9_11_a7
Liu, Zeqing; Na, Xue; Kwun, Young Chel; Kang, Shin Min. Fixed points of some set-valued F-contractions. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 11, p. 5790-5805. doi : 10.22436/jnsa.009.11.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.08/
[1] Generalized multivalued F-contractions on complete metric spaces, Bull. Iranian Math. Soc., Volume 40 (2014), pp. 1469-1478
[2] Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topology Appl., Volume 159 (2012), pp. 3234-3242
[3] Multi-valued nonlinear contraction mappings, Nonlinear Anal., Volume 71 (2009), pp. 2716-2723
[4] Fixed point results for F-contractive mappings of Hardy-Rogers-type, Filomat, Volume 28 (2014), pp. 715-722
[5] Fixed points of generalized contractive multi-valued mappings, J. Math. Anal. Appl., Volume 192 (1995), pp. 655-666
[6] On equivalence of generalized multi-valued contractions and Nadler's fixed point theorem, J. Math. Anal. Appl., Volume 336 (2007), pp. 751-757
[7] Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl., Volume 317 (2006), pp. 103-112
[8] uzuki-Wardowski type fixed point theorems for \(\alpha\)-GF-contractions, Taiwanese J. Math., Volume 18 (2014), pp. 1879-1895
[9] Fixed point theorems for set-valued contractions in complete metric spaces,, J. Math. Anal. Appl., Volume 334 (2007), pp. 132-139
[10] A generalized Nadler-type theorem in partial metric spaces, Int. J. Math. Anal. (Ruse), Volume 7 (2013), pp. 343-348
[11] Ćirić type generalized F-contractions on complete metric spaces and fixed point results, Filomat, Volume 28 (2014), pp. 1143-1151
[12] Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl., Volume 141 (1989), pp. 177-188
[13] Multi-valued contraction mappings, Pacific J. Math., Volume 30 (1969), pp. 475-488
[14] Multi-valued F-contractions in 0-complete partial metric spaces with application to Volterra type integral equation, Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM, Volume 108 (2014), pp. 1005-1020
[15] On set-valued contractions of Nadler type in cone metric spaces, Appl. Math. Lett., Volume 24 (2011), pp. 275-278
[16] Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory and Appl., Volume 2012 (2012), pp. 1-7
Cité par Sources :