A viscosity approximation method for nonself operators and equilibrium problems in Hilbert spaces
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 11, p. 5780-5789.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Viscosity approximate methods have recently received much attention due to the applications in convex optimization problems. In this paper, we study a viscosity iterative algorithm with computational errors. Strong convergence theorems of solutions are established in the framework of Hilbert spaces. The main results presented in this paper improve the corresponding results announced recently.
DOI : 10.22436/jnsa.009.11.07
Classification : 47H06, 90C33
Keywords: Gradient projection method, monotone operator, normal cone, optimization, projection.

Cho, Sun Young 1

1 Department of Mathematics, Gyeongsang National University, Jinju 660-701, Korea
@article{JNSA_2016_9_11_a6,
     author = {Cho, Sun Young},
     title = {A viscosity approximation method for nonself operators and equilibrium problems in {Hilbert} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5780-5789},
     publisher = {mathdoc},
     volume = {9},
     number = {11},
     year = {2016},
     doi = {10.22436/jnsa.009.11.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.07/}
}
TY  - JOUR
AU  - Cho, Sun Young
TI  - A viscosity approximation method for nonself operators and equilibrium problems in Hilbert spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5780
EP  - 5789
VL  - 9
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.07/
DO  - 10.22436/jnsa.009.11.07
LA  - en
ID  - JNSA_2016_9_11_a6
ER  - 
%0 Journal Article
%A Cho, Sun Young
%T A viscosity approximation method for nonself operators and equilibrium problems in Hilbert spaces
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5780-5789
%V 9
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.07/
%R 10.22436/jnsa.009.11.07
%G en
%F JNSA_2016_9_11_a6
Cho, Sun Young. A viscosity approximation method for nonself operators and equilibrium problems in Hilbert spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 11, p. 5780-5789. doi : 10.22436/jnsa.009.11.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.07/

[1] Bauschke, H. H.; Combettes, P. L. Convex analysis and monotone operator theory in Hilbert spaces, With a foreword by Hédy Attouch, CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, Springer, New York, 2011

[2] Dehaish, B. A. Bin; Latif, A.; Bakodah, H. O.; Qin, X. L. A viscosity splitting algorithm for solving inclusion and equilibrium problems, J. Inequal. Appl., Volume 2015 (2015), pp. 1-14

[3] Dehaish, B. A. Bin; Qin, X. L.; Latif, A.; Bakodah, H. O. Weak and strong convergence of algorithms for the sum of two accretive operators with applications, J. Nonlinear Convex Anal., Volume 16 (2015), pp. 1321-1336

[4] Blum, E.; Oettli, W. From optimization and variational inequalities to equilibrium problems, Math. Student, Volume 63 (1994), pp. 123-145

[5] Browder, F. E.; Petryshyn, W. V. Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., Volume 20 (1967), pp. 197-228

[6] Byrne, C. A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems, Volume 20 (2004), pp. 103-120

[7] Censor, Y.; Zenios, S. A. Parallel optimization, Theory, algorithms, and applications, With a foreword by George B. Dantzig, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 1997

[8] Cho, S. Y.; Qin, X. L. On the strong convergence of an iterative process for asymptotically strict pseudocontractions and equilibrium problems, Appl. Math. Comput., Volume 235 (2014), pp. 430-438

[9] Cho, S. Y.; Qin, X. L.; Kang, S. M. Iterative processes for common fixed points of two different families of mappings with applications, J. Global Optim., Volume 57 (2013), pp. 1429-1446

[10] Cho, S. Y.; Qin, X. L.; Wang, L. Strong convergence of a splitting algorithm for treating monotone operators, Fixed Point Theory and Appl., Volume 2014 (2014), pp. 1-15

[11] Ding, X. P.; Yao, J. C. Existence and algorithm of solutions for a new system of generalized mixed quasi-variational inclusions involving (\(h,\eta\))-monotone mappings, Nonlinear Funct. Anal. Appl., Volume 12 (2007), pp. 645-657

[12] Giannessi, F.; Maugeri, A. Variational inequalities and network equilibrium problems, Plenum Press, New York, 1995

[13] Kim, J. K. Convergence theorems of iterative sequences for generalized equilibrium problems involving strictly pseudocontractive mappings in Hilbert spaces, J. Comput. Anal. Appl., Volume 18 (2015), pp. 454-471

[14] Liu, L. S. Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., Volume 194 (1995), pp. 114-125

[15] Moudafi, A. Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., Volume 241 (2000), pp. 46-55

[16] Qin, X. L.; Cho, S. Y.; Wang, L. A regularization method for treating zero points of the sum of two monotone operators, Fixed Point Theory and Appl., Volume 2014 (2014), pp. 1-10

[17] Rockafellar, R. T. On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., Volume 149 (1970), pp. 75-88

[18] Suzuki, T. Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semi- groups without Bochner integrals, J. Math. Anal. Appl., Volume 305 (2005), pp. 227-239

[19] Suzuki, T. Moudafi's viscosity approximations with Meir-Keeler contractions, J. Math. Anal. Appl., Volume 325 (2007), pp. 342-352

[20] Wu, C. Q.; Cho, S. Y.; Shang, M. J. Moudafi's viscosity approximations with demi-continuous and strong pseudo- contractions for non-expansive semigroups, J. Inequal. Appl., Volume 2010 (2010), pp. 1-10

[21] Zhang, M. Strong convergence of a viscosity iterative algorithm in Hilbert spaces, J. Nonlinear Funct. Anal., Volume 2014 (2014), pp. 1-16

[22] Zhou, H. Y. Convergence theorems of fixed points for \(\kappa\)-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal., Volume 69 (2008), pp. 456-462

Cité par Sources :