Voir la notice de l'article provenant de la source International Scientific Research Publications
Ma, Cuina 1 ; Zhu, Peiyong 1 ; Li, Risong 2
@article{JNSA_2016_9_11_a5, author = {Ma, Cuina and Zhu, Peiyong and Li, Risong}, title = {On iteration invariants for {\((\mathcal{F}_1,\mathcal{F}_2)\)-sensitivity} and weak {\((\mathcal{F}_1,\mathcal{F}_2)\)-sensitivity} of non-autonomous discrete systems}, journal = {Journal of nonlinear sciences and its applications}, pages = {5772-5779}, publisher = {mathdoc}, volume = {9}, number = {11}, year = {2016}, doi = {10.22436/jnsa.009.11.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.06/} }
TY - JOUR AU - Ma, Cuina AU - Zhu, Peiyong AU - Li, Risong TI - On iteration invariants for \((\mathcal{F}_1,\mathcal{F}_2)\)-sensitivity and weak \((\mathcal{F}_1,\mathcal{F}_2)\)-sensitivity of non-autonomous discrete systems JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5772 EP - 5779 VL - 9 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.06/ DO - 10.22436/jnsa.009.11.06 LA - en ID - JNSA_2016_9_11_a5 ER -
%0 Journal Article %A Ma, Cuina %A Zhu, Peiyong %A Li, Risong %T On iteration invariants for \((\mathcal{F}_1,\mathcal{F}_2)\)-sensitivity and weak \((\mathcal{F}_1,\mathcal{F}_2)\)-sensitivity of non-autonomous discrete systems %J Journal of nonlinear sciences and its applications %D 2016 %P 5772-5779 %V 9 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.06/ %R 10.22436/jnsa.009.11.06 %G en %F JNSA_2016_9_11_a5
Ma, Cuina; Zhu, Peiyong; Li, Risong. On iteration invariants for \((\mathcal{F}_1,\mathcal{F}_2)\)-sensitivity and weak \((\mathcal{F}_1,\mathcal{F}_2)\)-sensitivity of non-autonomous discrete systems. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 11, p. 5772-5779. doi : 10.22436/jnsa.009.11.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.06/
[1] Recurrence in topological dynamics, Furstenberg families and Ellis actions, The University Series in Mathematics, Plenum Press, New York, 1997
[2] Li-Yorke sensitivity, Nonlinearity, Volume 16 (2003), pp. 1421-1433
[3] Nonautonomous difference equations: open problems and conjectures, Differences and differential equations, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, Volume 42 (2004), pp. 423-428
[4] Nonautonomous Beverton-Holt equations and the Cushing-Henson conjectures, J. Difference Equ. Appl., Volume 11 (2005), pp. 337-346
[5] Sensitive dependence on initial conditions, Nonlinearity, Volume 6 (1993), pp. 1067-1075
[6] Sensitivity of non-autonomous discrete dynamical systems, Appl. Math. Lett., Volume 39 (2015), pp. 31-34
[7] Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval, Fund. Math., Volume 160 (1999), pp. 161-181
[8] Topological entropy of nonautonomous dynamical systems, Random Comput. Dynam., Volume 4 (1996), pp. 205-233
[9] A note on chaos via Furstenberg family couple, Nonlinear Anal., Volume 72 (2010), pp. 2290-2299
[10] A note on stronger forms of sensitivity for dynamical systems, Chaos Solitons Fractals, Volume 45 (2012), pp. 753-758
[11] The large deviations theorem and ergodic sensitivity, Commun. Nonlinear Sci. Numer. Simul., Volume 18 (2013), pp. 819-825
[12] Several sufficient conditions for sensitive dependence on initial conditions, Nonlinear Anal., Volume 72 (2010), pp. 2716-2720
[13] Some remarks on (\(F_1;F_2\))-scrambled sets, (Chinese) Acta Math. Sinica (Chin. Ser.), Volume 53 (2010), pp. 727-732
[14] A note on chaos in product maps, Turkish J. Math., Volume 37 (2013), pp. 665-675
[15] Stronger forms of sensitivity for dynamical systems, Nonlinearity, Volume 20 (2007), pp. 2115-2126
[16] Sensitivity and regionally proximal relation in minimal systems, Sci. China Ser. A, Volume 51 (2008), pp. 987-994
[17] Chaos via Furstenberg family couple, Topology Appl., Volume 156 (2009), pp. 525-532
[18] On F-sensitive pairs, Acta Math. Sci. Ser. B Engl. Ed., Volume 31 (2011), pp. 1425-1435
[19] On the large deviations theorem and ergodicity, Commun. Nonlinear Sci. Numer. Simul., Volume 30 (2016), pp. 243-247
[20] On weak Lyapunov exponent and sensitive dependence of interval maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 24 (2014), pp. 1-5
[21] On various definitions of shadowing with average error in tracing, Nonlinearity, Volume 29 (2016), pp. 1942-1972
[22] On the iteration properties of large deviations theorem, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 26 (2016), pp. 1-6
[23] F-mixing property and (F1, F2)-everywhere chaos of inverse limit dynamical systems, Nonlinear Anal., Volume 104 (2014), pp. 147-155
[24] F-sensitivity and multi-sensitivity of hyperspatial dynamical systems, J. Math. Anal. Appl., Volume 429 (2015), pp. 16-26
[25] Weighted backward shift operators with invariant distributionally scrambled subsets, Ann. Funct. Anal. ((accepted))
[26] Chaos via a couple of Furstenberg families, (Chinese) Acta Math. Sinica (Chin. Ser.), Volume 55 (2012), pp. 1039-1054
[27] Chaos in a class of non-autonomous discrete systems, Appl. Math. Lett., Volume 26 (2013), pp. 432-436
[28] Chaos in a topologically transitive system, Sci. China Ser. A, Volume 48 (2005), pp. 929-939
[29] On sensitive sets in topological dynamics, Nonlinearity, Volume 21 (2008), pp. 1601-1620
Cité par Sources :