Common fixed point theorems for generalized ordered contractive mappings on cone b--metric spaces over Banach algebras
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 11, p. 5766-5771.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduce the concept of generalized ordered contractive mappings on cone b-metric spaces over Banach algebras and establish a new common some fixed point theorems of such mappings under some natural conditions. The results extend and improve recent related results.
DOI : 10.22436/jnsa.009.11.05
Classification : 54H25, 47H10
Keywords: Cone b-metric spaces over Banach algebras, common fixed point, ordered contractive mappings.

Bai, Chuanzhi 1

1 Department of Mathematics, Huaiyin Normal University, Huaian, Jiangsu 223300, P. R. China
@article{JNSA_2016_9_11_a4,
     author = {Bai, Chuanzhi},
     title = {Common fixed point theorems for generalized ordered contractive mappings on cone b--metric spaces over {Banach} algebras},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5766-5771},
     publisher = {mathdoc},
     volume = {9},
     number = {11},
     year = {2016},
     doi = {10.22436/jnsa.009.11.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.05/}
}
TY  - JOUR
AU  - Bai, Chuanzhi
TI  - Common fixed point theorems for generalized ordered contractive mappings on cone b--metric spaces over Banach algebras
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5766
EP  - 5771
VL  - 9
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.05/
DO  - 10.22436/jnsa.009.11.05
LA  - en
ID  - JNSA_2016_9_11_a4
ER  - 
%0 Journal Article
%A Bai, Chuanzhi
%T Common fixed point theorems for generalized ordered contractive mappings on cone b--metric spaces over Banach algebras
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5766-5771
%V 9
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.05/
%R 10.22436/jnsa.009.11.05
%G en
%F JNSA_2016_9_11_a4
Bai, Chuanzhi. Common fixed point theorems for generalized ordered contractive mappings on cone b--metric spaces over Banach algebras. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 11, p. 5766-5771. doi : 10.22436/jnsa.009.11.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.05/

[1] Alghamdi, M. A.; Hussain, N.; Salimi, P. Fixed point and coupled fixed point theorems on b-metric-like spaces, J. Inequal. Appl., Volume 2013 (2013), pp. 1-25

[2] Bakhtin, I. A. The contraction mapping principle in almost metric space, (Russian) Functional analysis, Ulyanovsk. Gos. Ped. Inst., Ulyanovsk, Volume 30 (1989), pp. 26-37

[3] Huang, L.-G.; Zhang, X. Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., Volume 332 (2007), pp. 1468-1476

[4] Liu, H.; Xu, S. Y. Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings, Fixed Point Theory and Appl., Volume 2013 (2013), pp. 1-10

[5] Radenović, S.; Rhoades, B. E. Fixed point theorem for two non-self mappings in cone metric spaces, Comput. Math. Appl., Volume 57 (2009), pp. 1701-1707

[6] Rudin, W. Functional analysis, Second edition, International Series in Pure and Applied Mathematics, McGraw- Hill, Inc., New York, 1991

[7] Shah, M. H.; Hussain, N. Nonlinear contractions in partially ordered quasi b-metric spaces, Commun. Korean Math. Soc., Volume 27 (2012), pp. 117-128

[8] Xu, S. Y.; Radenović, S. Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality, Fixed Point Theory and Appl., Volume 2014 (2014), pp. 1-12

[9] Yin, J. D.; Wang, T.; Yan, Q. Fixed point theorems of ordered contractive mappings on cone metric spaces over Banach algebras, Fixed Point Theory and Appl., Volume 2015 (2015), pp. 1-13

[10] Zhu, C. X.; Chen, C. F.; Zhang, X. Z. Some results in quasi-b-metric-like spaces, J. Inequal. Appl., Volume 2014 (2014), pp. 1-8

Cité par Sources :