Multivariate best proximity point theorems in metric spaces
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 11, p. 5756-5765.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The purpose of this paper is to prove an existence and uniqueness theorems of the multivariate best proximity point in the complete metric spaces. The concept of multivariate best proximity point is firstly introduced in this article. These new results improve and extend the previously known ones in the literature.
DOI : 10.22436/jnsa.009.11.04
Classification : 47H05, 47H09, 47H10
Keywords: Contraction mapping principle, complete metric spaces, multivariate mapping, multivariate fixed point, multiply metric function, best proximity point theorem.

Luo, Yinglin 1 ; Su, Yongfu 1 ; Gao, Wenbiao 1

1 Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, China
@article{JNSA_2016_9_11_a3,
     author = {Luo, Yinglin and Su, Yongfu and Gao, Wenbiao},
     title = {Multivariate best proximity point theorems in metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5756-5765},
     publisher = {mathdoc},
     volume = {9},
     number = {11},
     year = {2016},
     doi = {10.22436/jnsa.009.11.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.04/}
}
TY  - JOUR
AU  - Luo, Yinglin
AU  - Su, Yongfu
AU  - Gao, Wenbiao
TI  - Multivariate best proximity point theorems in metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5756
EP  - 5765
VL  - 9
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.04/
DO  - 10.22436/jnsa.009.11.04
LA  - en
ID  - JNSA_2016_9_11_a3
ER  - 
%0 Journal Article
%A Luo, Yinglin
%A Su, Yongfu
%A Gao, Wenbiao
%T Multivariate best proximity point theorems in metric spaces
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5756-5765
%V 9
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.04/
%R 10.22436/jnsa.009.11.04
%G en
%F JNSA_2016_9_11_a3
Luo, Yinglin; Su, Yongfu; Gao, Wenbiao. Multivariate best proximity point theorems in metric spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 11, p. 5756-5765. doi : 10.22436/jnsa.009.11.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.04/

[1] Amini-Harandi, A.; Hussain, N.; Akbar, F. Best proximity point results for generalized contractions in metric spaces, Fixed Point Theory and Appl., Volume 2013 (2013), pp. 1-13

[2] Fan, K. Extensions of two fixed point theorems of F. E. Browder, Math Z., Volume 112 (1969), pp. 234-240

[3] Karapınar, E. On best proximity point of \(\psi\) -Geraghty contractions, Fixed Point Theory and Appl., Volume 2013 (2013), pp. 1-9

[4] Mongkolkeha, C.; Cho, Y. J.; Kumam, P. Best proximity points for Geraghty's proximal contraction mappings, Fixed Point Theory and Appl., Volume 2013 (2013), pp. 1-17

[5] Nashine, H. K.; Kumam, P.; Vetro, C. Best proximity point theorems for rational proximal contractions, Fixed Point Theory and Appl., Volume 2013 (2013), pp. 1-11

[6] Basha, S. Sadiq Best proximity point theorems generalizing the contraction principle, Nonlinear Anal., Volume 74 (2011), pp. 5844-5850

[7] Su, Y. F.; Petruşel, A.; Yao, J.-C. Multivariate fixed point theorems for contractions and nonexpansive mappings with applications, Fixed Point Theory and Appl., Volume 2016 (2016), pp. 1-19

[8] Su, Y. F.; Yao, J.-C. Further generalized contraction mapping principle and best proximity theorem in metric spaces, Fixed Point Theory and Appl., Volume 2015 (2015), pp. 1-13

[9] Yan, F. F.; Su, Y. F.; Feng, Q. S. A new contraction mapping principle in partially ordered metric spaces and applications to ordinary difierential equations, Fixed Point Theory and Appl., Volume 2012 (2012), pp. 1-13

[10] Zhang, J. L.; Su, Y. F. Best proximity point theorems for weakly contractive mapping and weakly Kannan mapping in partial metric spaces, Fixed Point Theory and Appl., Volume 2014 (2014), pp. 1-8

[11] Zhang, J. L.; Su, Y. F.; Cheng, Q. Q. A note on 'A best proximity point theorem for Geraghty-contractions', Fixed Point Theory and Appl., Volume 2013 (2013), pp. 1-4

[12] Zhang, J. L.; Su, Y. F.; Cheng, Q. Q. Best proximity point theorems for generalized contractions in partially ordered metric spaces, Fixed Point Theory and Appl., Volume 2013 (2013), pp. 1-7

Cité par Sources :