Voir la notice de l'article provenant de la source International Scientific Research Publications
Pant, Rajendra 1 ; Panicker, R. 2
@article{JNSA_2016_9_11_a2, author = {Pant, Rajendra and Panicker, R.}, title = {Geraghty and {\'Ciri\'c} type fixed point theorems in b-metric spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {5741-5755}, publisher = {mathdoc}, volume = {9}, number = {11}, year = {2016}, doi = {10.22436/jnsa.009.11.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.03/} }
TY - JOUR AU - Pant, Rajendra AU - Panicker, R. TI - Geraghty and Ćirić type fixed point theorems in b-metric spaces JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5741 EP - 5755 VL - 9 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.03/ DO - 10.22436/jnsa.009.11.03 LA - en ID - JNSA_2016_9_11_a2 ER -
%0 Journal Article %A Pant, Rajendra %A Panicker, R. %T Geraghty and Ćirić type fixed point theorems in b-metric spaces %J Journal of nonlinear sciences and its applications %D 2016 %P 5741-5755 %V 9 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.03/ %R 10.22436/jnsa.009.11.03 %G en %F JNSA_2016_9_11_a2
Pant, Rajendra; Panicker, R. Geraghty and Ćirić type fixed point theorems in b-metric spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 11, p. 5741-5755. doi : 10.22436/jnsa.009.11.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.03/
[1] Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, Volume 64 (2014), pp. 941-960
[2] Some fixed point results for \((\alpha,\beta)-(\psi,\phi)\)-contractive mappings, Filomat, Volume 28 (2014), pp. 635-647
[3] Fixed points of admissible almost contractive type mappings on b-metric spaces with an application to quadratic integral equations, J. Inequal. Appl., Volume 2015 (2015), pp. 1-18
[4] Stone-type theorem on b-metric spaces and applications, Topology Appl., Volume 185/186 (2015), pp. 50-64
[5] Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., Volume 8 (2010), pp. 367-377
[6] Fixed point theorems for some multivalued generalized contractions in b-metric spaces, Int. J. Math. Stat., Volume 6 (2010), pp. 65-76
[7] Some fixed point theorems for (\(\alpha,\beta\))-admissible Geraghty type contractive mappings and related results, Math. Sci. (Springer), Volume 9 (2015), pp. 127-135
[8] Fixed points of weak \(\alpha\)-contraction type maps, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-12
[9] A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., Volume 45 (1974), pp. 267-273
[10] Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11
[11] Nonlinear set-valued contraction mappings in b-metric spaces, Atti. Sem. Mat. Fis. Univ. Modena, Volume 46 (1998), pp. 263-276
[12] Round-off stability of iteration procedures for operators in b-metric spaces, J. Natur. Phys. Sci., Volume 11 (1997), pp. 87-94
[13] On contractive mappings, Proc. Amer. Math. Soc., Volume 40 (1973), pp. 604-608
[14] On \(\alpha-\psi\)-Meir-Keeler contractive mappings, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-12
[15] Generalized \(\alpha-\psi\) contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-17
[16] A generalization of Ćirić fixed point theorems, Filomat, Volume 29 (2015), pp. 1549-1556
[17] Various Suzuki type theorems in b-metric spaces, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 363-377
[18] A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., Volume 226 (1977), pp. 257-290
[19] Fixed point theorems for \(\alpha\psi\)-contractive type mappings, Nonlinear Anal., Volume 75 (2012), pp. 2154-2165
[20] Stability of iterative procedures for multivalued maps in metric spaces, Demonstratio Math., Volume 37 (2005), pp. 905-916
[21] Fixed point result and applications on a b-metric space endowed with an arbitrary binary relation, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-13
Cité par Sources :