Positive solutions for fractional differential equation involving the Riemann-Stieltjes integral conditions with two parameters
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 11, p. 5733-5740.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Through the application of the upper-lower solutions method and the fixed point theorem on cone, under certain conditions, we obtain that there exist appropriate regions of parameters in which the fractional differential equation has at least one or no positive solution. In the end, an example is worked out to illustrate our main results.
DOI : 10.22436/jnsa.009.11.02
Classification : 34A08, 34B18, 34B08, 34B10, 47N20
Keywords: Fractional differential equation, Riemann-Stieltjes integral conditions, upper-lower solutions, the fixed point theorem.

Wang, Ying 1

1 School of Science, Linyi University, Linyi 276000, Shandong, P. R. China
@article{JNSA_2016_9_11_a1,
     author = {Wang, Ying},
     title = {Positive solutions for  fractional differential equation involving the {Riemann-Stieltjes} integral conditions with two parameters},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5733-5740},
     publisher = {mathdoc},
     volume = {9},
     number = {11},
     year = {2016},
     doi = {10.22436/jnsa.009.11.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.02/}
}
TY  - JOUR
AU  - Wang, Ying
TI  - Positive solutions for  fractional differential equation involving the Riemann-Stieltjes integral conditions with two parameters
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5733
EP  - 5740
VL  - 9
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.02/
DO  - 10.22436/jnsa.009.11.02
LA  - en
ID  - JNSA_2016_9_11_a1
ER  - 
%0 Journal Article
%A Wang, Ying
%T Positive solutions for  fractional differential equation involving the Riemann-Stieltjes integral conditions with two parameters
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5733-5740
%V 9
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.02/
%R 10.22436/jnsa.009.11.02
%G en
%F JNSA_2016_9_11_a1
Wang, Ying. Positive solutions for  fractional differential equation involving the Riemann-Stieltjes integral conditions with two parameters. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 11, p. 5733-5740. doi : 10.22436/jnsa.009.11.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.02/

[1] Cabrera, I. J.; Harjani, J.; Sadarangani, K. B. Positive and nondecreasing solutions to an m-point boundary value problem for nonlinear fractional differential equation, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-15

[2] Deimling, K. Nonlinear functional analysis, Springer-Verlag, Berlin, 1985

[3] El-Shahed, M. Positive solutions for boundary value problem of nonlinear fractional differential equation, Abstr. Appl. Anal., Volume 2007 (2007), pp. 1-8

[4] Goodrich, C. S. Existence of a positive solution to a class of fractional differential equations, Appl. Math. Lett., Volume 23 (2010), pp. 1050-1055

[5] Guo, D. J.; Lakshmikantham, V. Nonlinear problems in abstract cones, Notes and Reports in Mathematics in Science and Engineering, Academic Press, Inc., Boston, 1988

[6] Guo, L. M.; Liu, L. S.; Wu, Y. H. Uniqueness of iterative positive solutions for the singular fractional differential equations with integral boundary conditions, Bound. Value Probl., Volume 2016 (2016), pp. 1-20

[7] Jankowski, T. Boundary problems for fractional differential equations, Appl. Math. Lett., Volume 28 (2014), pp. 14-19

[8] Miller, K. S.; Ross, B. An introduction to the fractional calculus and fractional differential equations, A Wiley- Interscience Publication, John Wiley & Sons, Inc., New York, 1993

[9] Nyamoradi, N. Existence of solutions for multi point boundary value problems for fractional differential equations, Arab J. Math. Sci., Volume 18 (2012), pp. 165-175

[10] Podlubny, I. Fractional differential equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, Academic Press, Inc., San Diego, 1999

[11] Wang, F. L.; An, Y. K. On positive solutions for nonhomogeneous m-point boundary value problems with two parameters, Bound. Value Probl., Volume 2012 (2012), pp. 1-11

[12] Wang, Y.; Liu, L. S.; Zhang, X. U.; Wu, Y. H. Positive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection, Appl. Math. Comput., Volume 258 (2015), pp. 312-324

[13] Yuan, C. J. Multiple positive solutions for (n - 1; 1)-type semipositone conjugate boundary value problems of nonlinear fractional differential equations, Electron. J. Qual. Theory Differ. Equ., Volume 2010 (2010), pp. 1-12

[14] Zhang, X. U.; Liu, L. S.; H.Wu, Y.; Wiwatanapataphee, B. The spectral analysis for a singular fractional differential equation with a signed measure, Appl. Math. Comput., Volume 257 (2015), pp. 252-263

[15] Zhao, X. K.; Chai, C. W.; Ge, W. G. Existence and nonexistence results for a class of fractional boundary value problems, J. Appl. Math. Comput., Volume 41 (2013), pp. 17-31

Cité par Sources :