Voir la notice de l'article provenant de la source International Scientific Research Publications
Wu, Guangrong 1 ; Yang, Liping 1
@article{JNSA_2016_9_11_a0, author = {Wu, Guangrong and Yang, Liping}, title = {General iteration scheme for finding the common fixed points of an infinite family of nonexpansive mappings}, journal = {Journal of nonlinear sciences and its applications}, pages = {5720-5732}, publisher = {mathdoc}, volume = {9}, number = {11}, year = {2016}, doi = {10.22436/jnsa.009.11.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.01/} }
TY - JOUR AU - Wu, Guangrong AU - Yang, Liping TI - General iteration scheme for finding the common fixed points of an infinite family of nonexpansive mappings JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5720 EP - 5732 VL - 9 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.01/ DO - 10.22436/jnsa.009.11.01 LA - en ID - JNSA_2016_9_11_a0 ER -
%0 Journal Article %A Wu, Guangrong %A Yang, Liping %T General iteration scheme for finding the common fixed points of an infinite family of nonexpansive mappings %J Journal of nonlinear sciences and its applications %D 2016 %P 5720-5732 %V 9 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.01/ %R 10.22436/jnsa.009.11.01 %G en %F JNSA_2016_9_11_a0
Wu, Guangrong; Yang, Liping. General iteration scheme for finding the common fixed points of an infinite family of nonexpansive mappings. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 11, p. 5720-5732. doi : 10.22436/jnsa.009.11.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.01/
[1] Strong convergence theorems of a general iterative process for a finite family of \(\lambda_i\)-strict pseudo-contractions in q-uniformly smooth Banach spaces, Comput. Math. Appl., Volume 59 (2010), pp. 149-160
[2] Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM Studies in Applied Mathematics, Philadelphia, 1989
[3] Topics in Metric Fixed Point Theory, Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1990
[4] A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., Volume 318 (2006), pp. 43-52
[5] New approximation schemes for general variational inequalities, J. Math. Anal. Appl., Volume 251 (2000), pp. 217-229
[6] Strong convergence of Ishikawa iterative method for nonexpansive mappings in Hilbert space, J. Math. Inequal., Volume 1 (2007), pp. 195-204
[7] Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math., Volume 5 (2001), pp. 387-404
[8] Strong convergence of Krasnoselskii and Mann's sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., Volume 305 (2005), pp. 227-239
[9] Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., Volume 298 (2004), pp. 279-291
[10] A general iterative method for an infinite family of nonexpansive mappings, Nonlinear Anal., Volume 69 (2008), pp. 1644-1654
[11] Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings, Fixed Point Theory and Appl., Volume 2007 (2007), pp. 1-12
Cité par Sources :