General iteration scheme for finding the common fixed points of an infinite family of nonexpansive mappings
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 11, p. 5720-5732.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The purpose of this paper is to suggest and analyze the general viscosity iteration scheme for an infinite family of nonexpansive mappings $\{T_i\}^\infty_{i=1}$. Additionally, it proves that this iterative scheme converges strongly to a common fixed point of $\{T_i\}^\infty_{i=1}$ in the framework of reflexive and smooth convex Banach space, which solves some variational inequality. Results proved in this paper improve and generalize recent known results in the literature.
DOI : 10.22436/jnsa.009.11.01
Classification : 47H09, 47H10, 47J20
Keywords: Nonexpansive mapping, general iteration scheme, contraction, smooth Banach space.

Wu, Guangrong 1 ; Yang, Liping 1

1 School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
@article{JNSA_2016_9_11_a0,
     author = {Wu, Guangrong and Yang, Liping},
     title = {General iteration scheme for finding the common fixed points of an infinite family of nonexpansive mappings},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5720-5732},
     publisher = {mathdoc},
     volume = {9},
     number = {11},
     year = {2016},
     doi = {10.22436/jnsa.009.11.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.01/}
}
TY  - JOUR
AU  - Wu, Guangrong
AU  - Yang, Liping
TI  - General iteration scheme for finding the common fixed points of an infinite family of nonexpansive mappings
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5720
EP  - 5732
VL  - 9
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.01/
DO  - 10.22436/jnsa.009.11.01
LA  - en
ID  - JNSA_2016_9_11_a0
ER  - 
%0 Journal Article
%A Wu, Guangrong
%A Yang, Liping
%T General iteration scheme for finding the common fixed points of an infinite family of nonexpansive mappings
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5720-5732
%V 9
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.01/
%R 10.22436/jnsa.009.11.01
%G en
%F JNSA_2016_9_11_a0
Wu, Guangrong; Yang, Liping. General iteration scheme for finding the common fixed points of an infinite family of nonexpansive mappings. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 11, p. 5720-5732. doi : 10.22436/jnsa.009.11.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.11.01/

[1] Cai, G.; Hu, C. S. Strong convergence theorems of a general iterative process for a finite family of \(\lambda_i\)-strict pseudo-contractions in q-uniformly smooth Banach spaces, Comput. Math. Appl., Volume 59 (2010), pp. 149-160

[2] Glowinski, R.; Tallec, P. Le Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM Studies in Applied Mathematics, Philadelphia, 1989

[3] Goebel, K.; Kirk, W. A. Topics in Metric Fixed Point Theory, Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1990

[4] Marino, G.; Xu, H.-K. A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., Volume 318 (2006), pp. 43-52

[5] Noor, M. A. New approximation schemes for general variational inequalities, J. Math. Anal. Appl., Volume 251 (2000), pp. 217-229

[6] Shang, M. J.; Qin, X. L.; Su, Y. F. Strong convergence of Ishikawa iterative method for nonexpansive mappings in Hilbert space, J. Math. Inequal., Volume 1 (2007), pp. 195-204

[7] Shimoji, K.; Takahashi, W. Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math., Volume 5 (2001), pp. 387-404

[8] Suzuki, T. Strong convergence of Krasnoselskii and Mann's sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., Volume 305 (2005), pp. 227-239

[9] Xu, H.-K. Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., Volume 298 (2004), pp. 279-291

[10] Yao, Y.; Liou, Y. -C.; Chen, R. A general iterative method for an infinite family of nonexpansive mappings, Nonlinear Anal., Volume 69 (2008), pp. 1644-1654

[11] Yao, Y. H.; Liou, Y.-C.; Yao, J.-C. Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings, Fixed Point Theory and Appl., Volume 2007 (2007), pp. 1-12

Cité par Sources :