New Hermite-Hadamard inequalities for twice differentiable $\phi$-MT-preinvex functions
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5648-5660.

Voir la notice de l'article provenant de la source International Scientific Research Publications

New Hermite-Hadamard-type integral inequalities for $\phi$-MT-preinvex functions are obtained. Our results in special cases yield some of those results proved in recent articles concerning with the differentiable MTconvex functions. Some applications to special means and the trapezoidal formula are also considered, respectively.
DOI : 10.22436/jnsa.009.10.11
Classification : 26D15, 26A51, 26B12
Keywords: \(\phi\)-MT-preinvex functions, Hermite-Hadamard's integral inequality, Hölder's inequality.

Zheng, Sheng 1 ; Du, Ting-Song 1 ; Zhao, Sha-Sha 1 ; Chen, Lian-Zi 1

1 College of Science, China Three Gorges University, 443002, Yichang, P. R. China
@article{JNSA_2016_9_10_a10,
     author = {Zheng, Sheng and Du, Ting-Song and Zhao, Sha-Sha and Chen, Lian-Zi},
     title = {New {Hermite-Hadamard} inequalities for twice differentiable {\(\phi\)-MT-preinvex} functions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5648-5660},
     publisher = {mathdoc},
     volume = {9},
     number = {10},
     year = {2016},
     doi = {10.22436/jnsa.009.10.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.11/}
}
TY  - JOUR
AU  - Zheng, Sheng
AU  - Du, Ting-Song
AU  - Zhao, Sha-Sha
AU  - Chen, Lian-Zi
TI  - New Hermite-Hadamard inequalities for twice differentiable \(\phi\)-MT-preinvex functions
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 5648
EP  - 5660
VL  - 9
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.11/
DO  - 10.22436/jnsa.009.10.11
LA  - en
ID  - JNSA_2016_9_10_a10
ER  - 
%0 Journal Article
%A Zheng, Sheng
%A Du, Ting-Song
%A Zhao, Sha-Sha
%A Chen, Lian-Zi
%T New Hermite-Hadamard inequalities for twice differentiable \(\phi\)-MT-preinvex functions
%J Journal of nonlinear sciences and its applications
%D 2016
%P 5648-5660
%V 9
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.11/
%R 10.22436/jnsa.009.10.11
%G en
%F JNSA_2016_9_10_a10
Zheng, Sheng; Du, Ting-Song; Zhao, Sha-Sha; Chen, Lian-Zi. New Hermite-Hadamard inequalities for twice differentiable \(\phi\)-MT-preinvex functions. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5648-5660. doi : 10.22436/jnsa.009.10.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.11/

[1] Antczak, T. Mean value in invexity analysis, Nonlinear Anal., Volume 60 (2005), pp. 1473-1484

[2] Dragomir, S. S. On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math., Volume 33 (2002), pp. 55-65

[3] Eftekhari, N. Some remarks on (s;m)-convexity in the second sense, J. Math. Inequal., Volume 8 (2014), pp. 489-495

[4] Fok, H. K.; Vong, S. W. Generalizations of some Hermite-Hadamard-type inequalities, Indian J. Pure Appl. Math., Volume 46 (2015), pp. 359-370

[5] Ghazanfari, A. G.; Barani, A. Some Hermite-Hadamard type inequalities for the product of two operator preinvex functions, Banach J. Math. Anal., Volume 9 (2015), pp. 9-20

[6] Jakšić, R.; Kvesić, L.; Pečarić, J. On weighted generalization of the Hermite-Hadamard inequality,, Math. Inequal. Appl., Volume 18 (2015), pp. 649-665

[7] Latif, M. A.; Dragomir, S. S. Generalization of Hermite-Hadamard type inequalities for n-times differentiable functions which are s-preinvex in the second sense with applications, Hacet. J. Math. Stat., Volume 44 (2015), pp. 839-853

[8] Latif, M. A.; Dragomir, S. S. New integral inequalities of Hermite-Hadamard type for n-times differentiable s- logarithmically convex functions with applications, Miskolc Math. Notes, Volume 16 (2015), pp. 219-235

[9] Latif, M. A.; Dragomir, S. S. On Hermite-Hadamard type integral inequalities for n-times differentiable log-preinvex functions, Filomat, Volume 29 (2015), pp. 1651-1661

[10] Li, Y. J.; Du, T. S. On Simpson type inequalities for functions whose derivatives are extended (s;m)-GA-convex functions, Pure Appl. Math. China, Volume 31 (2015), pp. 487-497

[11] Li, Y. J.; Du, T. S. Some improvements on Hermite-Hadamard's inequalities for s-convex functions, J. Math. Study, Volume 49 (2016), pp. 82-92

[12] Li, Y. J.; Du, T. S. Some Simpson type integral inequalities for functions whose third derivatives are (\(\alpha,m\))-GA- convex functions, J. Egyptian Math. Soc., Volume 24 (2016), pp. 175-180

[13] Li, Y. J.; Du, T. S. A generalization of Simpson type inequality via differentiable functions using extended \((s;m)_\phi\)- preinvex functions, J. Comput. Anal. Appl., Volume 22 (2017), pp. 613-632

[14] Liu, W. J. Ostrowski type fractional integral inequalities for MT-convex functions, Miskolc Math. Notes, Volume 16 (2015), pp. 249-256

[15] Noor, M. A. Some new classes of nonconvex functions, Nonlinear Funct. Anal. Appl., Volume 11 (2006), pp. 165-171

[16] Noor, M. A.; Noor, K. I. Generalized preinvex functions and their properties, J. Appl. Math. Stoch. Anal., Volume 2006 (2006), pp. 1-13

[17] Noor, K. I.; Noor, M. A. Relaxed strongly nonconvex functions, Appl. Math. E-Notes, Volume 6 (2006), pp. 259-267

[18] Özdemir, M. E.; Avci, M.; Kavurmaci, H. Hermite-Hadamard-type inequalities via (\(\alpha,m\))-convexity, Comput. Math. Appl., Volume 61 (2011), pp. 2614-2620

[19] Özdemir, M. E.; Avci, M.; Set, E. On some inequalities of Hermite-Hadamard type via m-convexity, Appl. Math. Lett., Volume 23 (2010), pp. 1065-1070

[20] Park, J. K. Hermite-Hadamard-like Type Inequalities for Twice Differentiable MT-Convex Functions, Appl. Math. Sci., Volume 9 (2015), pp. 5235-5250

[21] Park, J. K. Some Hermite-Hadamard Type Inequalities for MT-Convex Functions via Classical and Riemann- Liouville Fractional Integrals, Appl. Math. Sci., Volume 9 (2015), pp. 5011-5026

[22] Pavić, Z. Improvements of the Hermite-Hadamard inequality,, J. Inequal. Appl., Volume 2015 (2015), pp. 1-11

[23] Pini, R. Invexity and generalized convexity, Optimization, Volume 22 (1991), pp. 513-525

[24] Qu, M. H.; Liu, W. J.; Park, J. Some new Hermite-Hadamard-type inequalities for geometric-arithmetically s- convex functions, WSEAS Trans. Math., Volume 13 (2014), pp. 452-461

[25] Sarikaya, M. Z.; Kiris, M. E. Some new inequalities of Hermite-Hadamard type for s-convex functions, Miskolc Math. Notes, Volume 16 (2015), pp. 491-501

[26] Tunç, M. On some integral inequalities via h-convexity, Miskolc Math. Notes, Volume 14 (2013), pp. 1041-1057

[27] Tunç, M. Ostrowski type inequalities for functions whose derivatives are MT-convex, J. Comput. Anal. Appl., Volume 17 (2014), pp. 691-696

[28] Tunç, M.; Şubaş, Y.; Karabayir, I. On some Hadamard type inequalities for MT-convex functions, Int. J. Open Problems Comput. Math., Volume 6 (2013), pp. 102-113

[29] Tunç, M.; Yildirim, H. On MT-convexity, arXiv preprint, Volume 2012 (2012), pp. 1-7

[30] Xi, B.-Y.; Qi, F. Inequalities of Hermite-Hadamard type for extended s-convex functions and applications to means, J. Nonlinear Convex Anal., Volume 16 (2015), pp. 873-890

[31] Yang, Z. Q.; Li, Y. J.; Du, T. S. A generalization of Simpson type inequality via differentiable functions using (s;m)-convex functions, Ital. J. Pure Appl. Math., Volume 35 (2015), pp. 327-338

[32] Yang, X. M.; Yang, X. Q.; Teo, K. L. Generalized invexity and generalized invariant monotonicity, J. Optim. Theory Appl., Volume 117 (2003), pp. 607-625

Cité par Sources :