Voir la notice de l'article provenant de la source International Scientific Research Publications
Zheng, Sheng 1 ; Du, Ting-Song 1 ; Zhao, Sha-Sha 1 ; Chen, Lian-Zi 1
@article{JNSA_2016_9_10_a10, author = {Zheng, Sheng and Du, Ting-Song and Zhao, Sha-Sha and Chen, Lian-Zi}, title = {New {Hermite-Hadamard} inequalities for twice differentiable {\(\phi\)-MT-preinvex} functions}, journal = {Journal of nonlinear sciences and its applications}, pages = {5648-5660}, publisher = {mathdoc}, volume = {9}, number = {10}, year = {2016}, doi = {10.22436/jnsa.009.10.11}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.11/} }
TY - JOUR AU - Zheng, Sheng AU - Du, Ting-Song AU - Zhao, Sha-Sha AU - Chen, Lian-Zi TI - New Hermite-Hadamard inequalities for twice differentiable \(\phi\)-MT-preinvex functions JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 5648 EP - 5660 VL - 9 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.11/ DO - 10.22436/jnsa.009.10.11 LA - en ID - JNSA_2016_9_10_a10 ER -
%0 Journal Article %A Zheng, Sheng %A Du, Ting-Song %A Zhao, Sha-Sha %A Chen, Lian-Zi %T New Hermite-Hadamard inequalities for twice differentiable \(\phi\)-MT-preinvex functions %J Journal of nonlinear sciences and its applications %D 2016 %P 5648-5660 %V 9 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.11/ %R 10.22436/jnsa.009.10.11 %G en %F JNSA_2016_9_10_a10
Zheng, Sheng; Du, Ting-Song; Zhao, Sha-Sha; Chen, Lian-Zi. New Hermite-Hadamard inequalities for twice differentiable \(\phi\)-MT-preinvex functions. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 10, p. 5648-5660. doi : 10.22436/jnsa.009.10.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.10.11/
[1] Mean value in invexity analysis, Nonlinear Anal., Volume 60 (2005), pp. 1473-1484
[2] On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math., Volume 33 (2002), pp. 55-65
[3] Some remarks on (s;m)-convexity in the second sense, J. Math. Inequal., Volume 8 (2014), pp. 489-495
[4] Generalizations of some Hermite-Hadamard-type inequalities, Indian J. Pure Appl. Math., Volume 46 (2015), pp. 359-370
[5] Some Hermite-Hadamard type inequalities for the product of two operator preinvex functions, Banach J. Math. Anal., Volume 9 (2015), pp. 9-20
[6] On weighted generalization of the Hermite-Hadamard inequality,, Math. Inequal. Appl., Volume 18 (2015), pp. 649-665
[7] Generalization of Hermite-Hadamard type inequalities for n-times differentiable functions which are s-preinvex in the second sense with applications, Hacet. J. Math. Stat., Volume 44 (2015), pp. 839-853
[8] New integral inequalities of Hermite-Hadamard type for n-times differentiable s- logarithmically convex functions with applications, Miskolc Math. Notes, Volume 16 (2015), pp. 219-235
[9] On Hermite-Hadamard type integral inequalities for n-times differentiable log-preinvex functions, Filomat, Volume 29 (2015), pp. 1651-1661
[10] On Simpson type inequalities for functions whose derivatives are extended (s;m)-GA-convex functions, Pure Appl. Math. China, Volume 31 (2015), pp. 487-497
[11] Some improvements on Hermite-Hadamard's inequalities for s-convex functions, J. Math. Study, Volume 49 (2016), pp. 82-92
[12] Some Simpson type integral inequalities for functions whose third derivatives are (\(\alpha,m\))-GA- convex functions, J. Egyptian Math. Soc., Volume 24 (2016), pp. 175-180
[13] A generalization of Simpson type inequality via differentiable functions using extended \((s;m)_\phi\)- preinvex functions, J. Comput. Anal. Appl., Volume 22 (2017), pp. 613-632
[14] Ostrowski type fractional integral inequalities for MT-convex functions, Miskolc Math. Notes, Volume 16 (2015), pp. 249-256
[15] Some new classes of nonconvex functions, Nonlinear Funct. Anal. Appl., Volume 11 (2006), pp. 165-171
[16] Generalized preinvex functions and their properties, J. Appl. Math. Stoch. Anal., Volume 2006 (2006), pp. 1-13
[17] Relaxed strongly nonconvex functions, Appl. Math. E-Notes, Volume 6 (2006), pp. 259-267
[18] Hermite-Hadamard-type inequalities via (\(\alpha,m\))-convexity, Comput. Math. Appl., Volume 61 (2011), pp. 2614-2620
[19] On some inequalities of Hermite-Hadamard type via m-convexity, Appl. Math. Lett., Volume 23 (2010), pp. 1065-1070
[20] Hermite-Hadamard-like Type Inequalities for Twice Differentiable MT-Convex Functions, Appl. Math. Sci., Volume 9 (2015), pp. 5235-5250
[21] Some Hermite-Hadamard Type Inequalities for MT-Convex Functions via Classical and Riemann- Liouville Fractional Integrals, Appl. Math. Sci., Volume 9 (2015), pp. 5011-5026
[22] Improvements of the Hermite-Hadamard inequality,, J. Inequal. Appl., Volume 2015 (2015), pp. 1-11
[23] Invexity and generalized convexity, Optimization, Volume 22 (1991), pp. 513-525
[24] Some new Hermite-Hadamard-type inequalities for geometric-arithmetically s- convex functions, WSEAS Trans. Math., Volume 13 (2014), pp. 452-461
[25] Some new inequalities of Hermite-Hadamard type for s-convex functions, Miskolc Math. Notes, Volume 16 (2015), pp. 491-501
[26] On some integral inequalities via h-convexity, Miskolc Math. Notes, Volume 14 (2013), pp. 1041-1057
[27] Ostrowski type inequalities for functions whose derivatives are MT-convex, J. Comput. Anal. Appl., Volume 17 (2014), pp. 691-696
[28] On some Hadamard type inequalities for MT-convex functions, Int. J. Open Problems Comput. Math., Volume 6 (2013), pp. 102-113
[29] On MT-convexity, arXiv preprint, Volume 2012 (2012), pp. 1-7
[30] Inequalities of Hermite-Hadamard type for extended s-convex functions and applications to means, J. Nonlinear Convex Anal., Volume 16 (2015), pp. 873-890
[31] A generalization of Simpson type inequality via differentiable functions using (s;m)-convex functions, Ital. J. Pure Appl. Math., Volume 35 (2015), pp. 327-338
[32] Generalized invexity and generalized invariant monotonicity, J. Optim. Theory Appl., Volume 117 (2003), pp. 607-625
Cité par Sources :